

Optimisation of the CLIC positron source

Y. Zhao, S. Doebert, A. Latina, CERN

LCWS 2024@ The University of Tokyo, Japan

8-11 July 2024

Outline

• Introduction

• New baseline

• Alternative options

• Conclusions

Introduction

• Schematic layout (baseline) of the CLIC positron source

- Requirements
 - Maximum positron yield accepted by PDR
 - Peak energy deposition density (PEDD) < 35 J/g
- "Full" Simulation
 - Target simulated with **Geant4** (with Gaussian beam profile)
 - Realistic magnetic field of the matching device (AMD) obtained from Opera®
 - Analytic field for NC solenoids @ 0.5 T. Uniform field assumed for the chicane
 - 3D field for L-band from CST. Tracking simulated with RF-Track
- "Fast" simulation for optimisations PEDD < 30 J/g in fast simulation
 - Simulation up to pre-injector linac (~200 MeV) with constant field @ 0.5 T
 - Then use **analytic** formula (longitudinal tracking) up to PDR:

 $\Delta E = (2.86 \,\text{GeV} - E_{\text{ref}}) \cdot \cos(2\pi f \cdot (t - t_{\text{ref}}))$

Accepted e⁺ yield: $\eta = \frac{N_{e^+}}{N_{e^+}^{\text{Primary}}}$

Beam parameters

- Primary e⁻ beam parameters
 - DBA: drive-beam based acceleration mode; KBA: klystron based acceleration mode
 - Spot size of 2.5 mm is from old baseline. We will reoptimise it

Electron beam parameter	Unit	$380{ m GeV}$		$1.5~\&~3{\rm TeV}$
Acceleration mode		DBA	KBA	DBA
Beam energy	GeV	5	5	5
Energy spread (σ_E/E)	%	0.1	0.1	0.1
Bunch length (σ_z)	mm	1	1	1
Spot size $(\sigma_{x,y})$	mm	2.5	2.5	2.5
Emittance, $\epsilon_{x,y}^n$	$\mathrm{mm}{\cdot}\mathrm{mrad}$	80	80	80
Number of bunches per train		352	485	312

 ✓ 1.5 TeV always has the same parameters and results as 3 TeV

Required e⁺ beam parameters at PDR entrance (accepted)

• 20% safety margin is considered

Positron beam parameter	Unit	$380{ m GeV}$		$1.5 \& 3 \mathrm{TeV}$
Acceleration mode		DBA	KBA	DBA
Beam energy	GeV	2.86	2.86	2.86
Number of bunches per train		352	485	312
Bunch population without safety margin	10^{9}	5.200	3.870	3.700
Bunch population with safety margin	10^{9}	6.240	4.644	4.440
Bunch charge without safety margin	nC	0.833	0.620	0.593
Bunch charge with safety margin	nC	1.000	0.744	0.711
PDR energy acceptance (\pm)	%	1.2	1.2	1.2
PDR time window (total length)	$\mathrm{mm/c}$	20	20	20

PDR acceptance cuts

Target

Old baseline •

Hybrid target distance scan

New baseline

e

Single target thickness scans

Optimised target thickness vs beam energy

Target

• DBA @ 380 GeV

Parameter	Unit	Old baseline	New baseline
Electron beam energy	GeV	5	5
Electron beam spot size	$\mathbf{m}\mathbf{m}$	2.50	2.40
Electron bunch charge needed	nC	1.37	0.51
Normalised electron beam power	kW	120.5	44.4
Target profile		Hybrid	Single
Target thickness	mm	1.4, 10	18
Distance of hybrid target	m	2	-
Normalised PEDD in amorphous target	J/g	21.8	29.8
Normalised deposited power in amorphous target	kW	12.3	12.0
PDR positron yield	e^+/e^-	0.73	1.98

• DBA @ 3 TeV

Parameter	Unit	Old baseline	New baseline
Electron beam energy	GeV	5	5
Electron beam spot size	$\mathbf{m}\mathbf{m}$	2.5	1.50
Electron bunch charge needed	nC	0.97	0.27
Normalised electron beam power	kW	76.0	21.2
Target profile		Hybrid	Single
Target thickness	mm	1.4, 10	18
Distance of hybrid target	m	2	-
Normalised PEDD in amorphous target	J/g	13.7	29.6
Normalised deposited power in amorphous target	kW	7.7	5.7
PDR positron yield	e^+/e^-	0.73	2.61

Yongke ZHAO

CLIC positron source

Adiabatic matching device (AMD)

Old baseline

- Constant large aperture (40 mm)
- Analytic field from the adiabatic formula

$$B_z = \frac{B_0}{1 + \mu \cdot z}$$

• New baseline

- FC designed (H. Bajas et al.) with Opera®
- Realistic field and tapered aperture
- Manufacturing (*S. Doebert et al.*) with EDM or 3D printing in progress

EDM

3D printing CLIC positron source

On-axis Bz field

Schematic layout

On-axis Bz field

Pre-injector linac

- CLIC L-band (similar with injector and booster linacs), 2 GHz travelling wave (TW) structures, $2\pi/3$
- 1.5 m long, 20 mm constant iris radius aperture assumed, 200 mm distance
- Number of structures: 1 at dec. phase + 10 at acc. phase (two phases used and optimised for max. PDR accepted positron yield)
- To simplify the study, RF gradients are fixed at 20 MV/m
- Surrounded with NC solenoids (up to ~200 MeV): ~0.5 T

Schematic layout and on-axis Bz field (partial)

On-axis Ez field (3 cells)

NC solenoid types

Parameter	Symbol	Unit	Type 0	Type 1	Type 2
Average radius	R	$\mathbf{m}\mathbf{m}$	200	200	200
Length	l	mm	180	180	180
Peak field	B_0	Т	0.38	0.23	0.31

Chicane

• Chicane (and collimator) parameters

Chicane

Parameter	Symbol	Unit	Value
Dipole length	l	mm	200
Reference energy	e_0	MeV	200
Bending angle	θ	0	4.8, -4.8, -4.8, 4.8
Beam pipe aperture inside dipoles (total width)	D_x, D_y	mm	120, 50
Beam pipe aperture for collimator (total width)	D_x, D_y	mm	180, 60
Distance between chicane and other sections	d_0, d_4	mm	200, 200
Distance between dipoles	d_1, d_2, d_3	mm	160, 250, 160

Collimator

Parameter	Symbol	Unit	Value
Collimator length	l	mm	120
Offset of the aperture	x_0	mm	-30
Aperture (total width)	D_x, D_y	mm	60, 60

Schematic layout in X-Z plane

Schematic layout in X-Y plane

Injector linac

- Accelerate both e⁻ and e⁺ from 200 MeV to **2.86 GeV**.
- Same L-band RF structure as in pre-injector linac

Lattice parameters

Parameter	Symbol	Unit	S1	S2	S3	S4	S5
Total FODO cells	$N_{\rm FODO}$		16	18	14	7	6
FODO lattice phase advance	μ	0	90	90	90	90	90
Total quadrupoles	N_{Q}		33	37	29	15	13
Quadrupole length	l_{Q}	\mathbf{m}	0.4	0.4	0.4	0.4	0.4
Spacing between quadrupoles	d	\mathbf{m}	0.15	0.64	1.65	3.15	4.90
Quadrupoles surrounding a RF structure	$n_{ m Q}$		3	1	0	0	0
Total RF structures	$N_{\rm RF}$		8	18	28	28	36

RF parameters (common for all sections)

Parameter	Symbol	Unit	Value
RF frequency	f	GHz	2
RF structure length	l	m	1.5
RF structure aperture (radius)	a_0	$\mathbf{m}\mathbf{m}$	20
RF average gradient without compensation	G	MV/m	15.12
RF average gradient with compensation for short-range wakefield	G	MV/m	15.19
RF phase	φ	0	0

Transport efficiency

Preliminary. Matching optimisation in progress.

Baseline final results

• "Fast" simulation results

• Less realistic, but much faster (especially for optimisations)

Parameter	Unit	$380{ m GeV}$		$1.5~\&~3{\rm TeV}$
Acceleration mode		DBA	KBA	DBA
Optimised electron beam spot size	mm	2.40	2.45	1.50
Positron yield accepted by PDR		1.98	1.95	2.61
Electron bunch charge required	nC	0.51	0.38	0.27
Electron beam power required	kW	44.4	46.3	21.2
Normalised PEDD in target	J/g	29.8	29.6	29.6
Normalised total deposited power in target	kW	12.0	12.4	5.7

• "Full" simulation results

• ~12% loss of yield compared with "fast" simulation, but more realistic

Parameter	Unit	$380{ m GeV}$		$1.5 \& 3 \mathrm{TeV}$
Acceleration mode		DBA	KBA	DBA
Optimised electron beam spot size	mm	2.40	2.45	1.50
Positron yield accepted by PDR		1.78	1.74	2.36
Electron bunch charge required	nC	0.56	0.43	0.30
Electron bunch charge assumed for collective effects	nC	0.8	0.6	0.4
Electron beam power required	kW	49.4	51.8	23.5
Normalised PEDD in target	J/g	33.1	33.2	32.8
Normalised total deposited power in target	kW	13.3	13.9	6.3

Alternative options: uniform beam

Primary e⁻ beam with uniform profile (transverse distribution)

Beam radius scan

• Optimisation results (e.g. DBA @ 380 GeV)

Parameter	Unit	Gaussian	Uniform
Optimised electron beam size, $\sigma_{x,y}$ or $R_{x,y}$	mm	2.40	3.10
PDR positron yield		1.98	2.57
Electron bunch charge required	nC	0.51	0.39
Electron beam power required	kW	44.4	34.2
Normalised PEDD in target	J/g	29.8	29.6
Normalised total deposited power in target	kW	12.0	9.4

CLIC positron source

6

Alternative options: SC AMD

- Using a SC solenoid as AMD (HTS solenoid field from PSI for FCC-ee study)
- Target can then be tapered to increase yield (originally conceived by *Nicolas Vallis* from PSI for FCC-ee study)

Optimisation results

Schematic layout for tapered target

• The FCC-ee HTS field is found to be already optimal even also for CLIC positron source

Results for DBA @ 380 GeV & 3 TeV

Unit	FC	HTS	HTS-TT	HTS-TT-UB	
$\mathbf{m}\mathbf{m}$	2.40	2.10	1.70	2.25	0
	1.98	2.49	3.37	4.42	
nC	0.51	0.40	0.30	0.23	
kW	44.4	35.3	26.1	19.9	0
J/g	29.8	29.2	29.9	29.8	
kW	12.0	9.5	6.0	5.9	
					0
Unit	FC	HTS	HTS-TT	HTS-TT-UB	
$\mathbf{m}\mathbf{m}$	1.50	1.30	0.90	1.35	0
	2.61	3.21	5.20	6.00	Ŭ
nC	0.27	0.22	0.14	0.12	
kW	21.2	17.3	10.7	9.2	
J/g	29.6	29.8	30.0	29.9	
kW	5.7	4.6	2.3	2.5	
	Unit mm nC kW J/g kW Unit mm nC kW J/g kW	Unit FC mm 2.40 nC 0.51 kW 44.4 J/g 29.8 kW 12.0 Unit FC mm 1.50 2.61 nC nC 0.27 kW 21.2 J/g 29.6 kW 5.7	Unit FC HTS mm 2.40 2.10 1.98 2.49 nC 0.51 0.40 kW 44.4 35.3 J/g 29.8 29.2 kW 12.0 9.5 Unit FC HTS mm 1.50 1.30 261 3.21 nC 0.27 0.22 kW 21.2 17.3 J/g 29.6 29.8 kW 5.7 4.6	Unit FC HTS HTS-TT mm 2.40 2.10 1.70 1.98 2.49 3.37 nC 0.51 0.40 0.30 kW 44.4 35.3 26.1 J/g 29.8 29.2 29.9 kW 12.0 9.5 6.0 Unit FC HTS MTS-TT mm 1.50 1.30 0.90 2.61 3.21 5.20 nC 0.27 0.22 0.14 kW 21.2 17.3 10.7 J/g 29.6 29.8 30.0 kW 5.7 4.6 2.3 30.0 30.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- FC: FC based AMD. New baseline
- HTS: FCC-ee HTS based AMD
- HTS-TT: HTS + Tapered target
 - HTS-TT-UB: HTS + Tapered target + Uniform beam

Yongke ZHAO

Alternative options: lower energy electrons

- Lower energy electron beam leads to shorter electron linac and smaller cost
- Target thickness and beam spot size are reoptimised for different energies:

Electron beam energy [GeV]	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Optimised target thickness [mm]	12.0	13.5	14.5	15.5	16.5	17.0	17.5	18.0	18.0

Optimised e beam spot size

Electron beam energy [GeV]	1	1.5	2	2.5	3	3.5	4	4.5	5
Optimised spot size (DBA $@$ 380 GeV) [mm]	2.50	2.50	2.40	2.40	2.50	2.45	2.40	2.45	2.40
Optimised spot size (KBA $@$ 380 GeV) [mm]	2.50	2.55	2.50	2.45	2.55	2.45	2.45	2.60	2.45
Optimised spot size (DBA @ 1.5 & 3 TeV) [mm]	1.60	1.55	1.55	1.55	1.55	1.50	1.50	1.50	1.50

Scan of e⁻ beam energy (2.3 GeV might be a good alternative with 1 nC bunch charge required) ٠

Conclusions

- New baseline configurations for the CLIC positron source, for both drive-beam based and klystron based modes, at both 380 GeV and 3 (1.5) TeV stages
- Hybrid target (old baseline) replaced by single target option, with yield improved by a factor of ~2.7 @ 380 GeV (~3.6 @ 3 TeV), with reoptimised spot size
- Start-to-end optimisations with higher positron yield than any previous studies (though our simulatin is more conservative and realistic)
- Much more realistic simulations than any previous studies, up to the end of injector linac, with a preliminary PDR accepted positron yield of ~1.8 @ 380 GeV (~2.4 @ 3 TeV)
- Alternative options also investigated that can improve the yield significantly, such as using uniform electron beam, FCC-ee HTS solenoid based AMD, tapered target, etc. But some options might be challenging
- Alternative **lower electron energy option** also investigated. Might be a good alternative to reduce the energy 5 GeV to **2.3 GeV**. More studies are in progress

Acknowledgement

- Thanks very much for your attention!
- We thank *H. Bajas* for his efforts in designing the flux concentrator for the baseline CLIC AMD when he worked at CERN.
- We also thank *J. Kosse, B. Auchmann, M. Duda, et al.* from PSI for providing the HTS solenoid field map designed for FCC-ee.
- We also thank *N. Vallis* from PSI for discussions about the tapered target option.

Backup