Non-perturbative QED at LUXE and prospects for future e⁺- e⁻ colliders

Ruth Jacobs (DESY), for the LUXE collaboration

LCWS 2024, The University of Tokyo 10th July 2024

HELMHOLTZ

Overview

What is the LUXE experiment?

- proposed new experiment at DESY Hamburg & Eu.XFEL
- collisions between XFEL electron beam and high-intensity laser
 → probe (strong-field) QED in uncharted regime
- New physics search with optical beam dump experiment (NPOD)
- synergy between particle, accelerator and laser physics

What will be covered in today's talk?

- What is strong-field QED and why is it interesting (for linear e⁺/e⁻ colliders)?
- 2) What does LUXE add compared to previous and current SFQED/beam dump experiments?
- 3) What could be prospects for a LUXE-like experiment at a future e⁺/e⁻ collider?

More physics beyond collider at future LC: Sakaki-san's talk in Monday plenary

Strong-Field QED (SFQED)

- QED is one of the most well-tested theories in physics \rightarrow based on perturbative calculations
- LUXE will probe QED in non-perturbative strong-field regime
- strong external field: work by field over Compton wavelength > rest mass of virtual particle
 → Schwinger-Limit
 m² c³
- Schwinger critical field: $\mathcal{E}_{cr} = \frac{m_e^2 c^3}{e\hbar}$ (e.g. for electrical field: $\mathcal{E}_{cr} = 1.32 \cdot 10^{18} V/m$)

- Schwinger effect: creation of e⁺e⁻ pair from vacuum in constant field
 - \rightarrow existing fields orders of magnitude too small compared to \mathcal{E}_{cr} , effect unobservable... but:

Non-linear quantum effects accessible in fields below \mathcal{E}_{cr} with relativistic probe particles \rightarrow fields $\mathcal{O}(\mathcal{E}_{cr})$ in particle rest frame!

Creating strong fields in the laboratory

1) Solid state fixed-target experiments (e.g. NA63)

- Highly relativistic electrons impinging on crystalline target
- Crystal: EM field of ~10¹¹ V/m
 → reach Schwinger limit in probe electron rest frame
- Observed multiple SF-QED processes at critical field

2) Laser – particle beam collisions (LUXE, E320, E144)

- High-intensity optical laser pulse colliding with GeV particle beam (e^-, γ)
- Lorentz-boosted EM field in particle rest frame: $\mathcal{E}^* = \gamma \mathcal{E}_L (1 + cos\theta)$
- Collisions with secondary GeV photon beam possible (LUXE)
- "Clean lab conditions": no dependence on solid-state dynamics

DESY.

NA63: 10.1103/PhysRevD.108.052013

Source: Thesis A. Vogel (2008)

Creating strong fields in the laboratory

3) Beam-beam interactions (linear colliders)

- Schwinger critical field reached in collision of dense e+/e- bunches
 → aided by particle boost
- Pinch effect: particles in one bunch deflected by strong field of the other
 - deflection \rightarrow Beamstrahlung photons
 - scattering of photons \rightarrow pair production

 \rightarrow Luminosity enhancement, beam energy spread, detector backgrounds

particles per bin

LUXE experimental setup(s)

Unique in LUXE!

Non-linear Compton scattering

in strong fields, electron obtains larger effective mass $m_* = m_e \sqrt{1 + \xi^2}$ ٠

Photon energy (GeV)

- \rightarrow Compton edge shifts with laser intensity parameter ξ $\rightarrow n$ -th order harmonics (interaction with n laser photons)
- Note: Non-linear Compton scattering has a classical limit ٠ \rightarrow deviation between non-linear QED and non-linear classical Compton: quantum non-linearity parameter χ
- Parameters ξ and χ determined by laser intensity and electron beam energy ٠

Different combinations of ξ and χ result in different types of non-linear behavior!

Breit-Wheeler pair production

• Note: this process has no classical limit (energy threshold)! \rightarrow purely quantum, requires $\chi \sim \mathcal{O}(1)$!

LUXE: first experiment to measure Breit-Wheeler pair production with real photons!

LUXE in Strong-Field QED Parameter Space

- experimental reach in SF QED parameter space (ξ, χ) \rightarrow mainly determined by: particle beam energy, LASER intensity
- predecessor: E144 (SLAC e-laser collisions, 1990's) reached power-law regime, but not departure <u>Phys. Rev. D 60 (1999) 092004</u>
 → LUXE: three orders of magnitude more powerful laser
- LUXE unique ability: continuous high-statistics data-taking with variable laser spot size
- **DESY.** \rightarrow precision mapping of SFQED parameter space in transition regime

Linear colliders in SFQED parameter space

- Quantum non-linearity parameter χ in collider context often called Υ , with average:
- "intensity parameter": ξ , or a_0 work by background field over a Compton wavelength
 - [arxiv:1807.06968] approximate bunch crossing with half-cycle laser of wavelength $\lambda = 4\sigma_z$
 - Peak a_0 (for round beams): $a_0 = \sqrt{\frac{2}{\pi^3} \frac{r_e}{\sigma_0}} N$

Dace <u>J. List's talk (LCWS 2023)</u>

DESY. Extend SFQED parameter reach in beam-beam interactions by special runs, maximizing Υ ? Page 10

A LUXE-type experiment at a linear collider?

- SFQED experiments could be an interesting add-on to future collider facilities
 → e.g. extract few bunches from the main line and collide with a laser
- "LC-LUXE": LUXE-type experiment at ILC: e-beam energy 16.5 GeV (LUXE) \rightarrow 125 GeV \rightarrow 500 GeV $\rightarrow \chi \cong 0.4 \rightarrow 30 \rightarrow 120$, future laser developments could improve further

DESY.

An LC-LUXE would enter the completely unknown fully non-perturbative regime!

J. List's talk (LCWS 2023)

Where could SFQED be probed at a linear collider? Example ILC

LUXE overview

- LUXE uses high-quality 16.5 GeV Eu.XFEL electron beam before undulators
- Experiment location: Existing annex for future second Eu.XFEL fan(~2030's+)
 → Unique possibility to build and operate LUXE before that!
- Extract 1 bunch (out of 2700 bunches) per XFEL train for collision with laser

XFEL e ⁻ Beam Properties important for LUXE	
Energy	16.5 GeV
#electrons/bunch	1.5·10 ⁹
repetition rate	10 Hz

The LUXE laser

Laser intensity: $I = \frac{E_L}{\Delta t \pi d^2}$ $E_L: \text{ laser energy (J)}$ $\Delta t: \text{ pulse length (s)}$ $\pi d^2: \text{ focus area (m^2)}$		
LUXE basic Laser parameters		
edium	Ti:Sa	
gth	800nm (1.55eV)	
angle	17.2°	
ngth	30fs	1
9	≥3µm	
	40TW / 350TW	
ensity cm²]	13.3 / 120	
	Laser i I = $E_L: last \Delta t: pul \pi d^2: fcsic Laser paediumgthanglengtheensitycm2]$	Laser intensity: $I = \frac{E_L}{\Delta t \pi d^2}$ $E_L: \text{ laser energy (J)}$ $\Delta t: \text{ pulse length (s)}$ $\pi d^2: \text{ focus area (m^2)}$ sic Laser parameters edium Ti:Sa edium Ti:Sa edium 17:2° formal angle 17.2° formal angle 23

- LUXE laser: TiSa (40TW, upgradeable to 350TW) \rightarrow scan SFQED parameter space: vary laser spot size
- electron boost: current state-of-the-art in laser intensity is sufficient \rightarrow need exceptional shot-by-shot stability ٠
- LASER intensity uncertainty has a large impact on sensitivity \rightarrow high-precision LASER diagnostics

LUXE IP Detectors

Two complementary detector technologies per measurement \rightarrow cross-calibration, reduction of systematic uncertainties

x (cm) LUXE: interesting near-term application for new detector technologies

Page 16

Energy[GeV]

scintillator screen camera system

10

12

٠

Phys. Rev. D 106, 115034

LUXE BSM Searches (LUXE-NPOD)

- LUXE will produce a high-intensity photon beam through Compton Scattering \rightarrow produce e.g. axion-like (ALPs) in photon beam-dump
 - \rightarrow detect via new particle decay to two photons
- production of new particles also possible in primary electron/LASER interaction
- · advantage of photon-on dump compared to electron-on dump: lower background

Prospects for NPOD at future facilities?

- Higher effective luminosity and higher beam energies allow for gain in ALP sensitivity
- Additional gain by optimizing the laser intensity parameter (goal: enhance rate of photons with $E_{\gamma} > 1 \text{ GeV}$
- Significant extension in reach possible

I. Schulthess (see <u>talk</u> at ILC IDT WG3 meeting)

Summary

LUXE: explore QED in uncharted regime with unprecedented precision

- probe transition from perturbative to non-perturbative QED
- LUXE-NPOD beam-dump experiment sensitive to sub-GeV ALPs
- approval at DESY & EuXFEL ongoing

LUXE and future (linear) e⁺e⁻ colliders:

- SF-QED relevant for beam-beam interaction (could be studied in special high-Υ runs)
- LUXE-like e-beam-laser collision experiment at future linear collider could probe the fully nonperturbative regime
- LUXE detectors: testbed for new technologies e.g. for future colliders
- NPOD-like beam dump experiment has significantly extended reach in sensitivity

More documentation?

- LUXE TDR: <u>https://arxiv.org/abs/2308.00515</u>
- Website: <u>https://luxe.desy.de</u>

0402 5

Backup

SFQED with relativistic probes

In the lab: reach fields at Schwinger limit in the rest frame of highly relativistic probe particles
 → LUXE: 16.5 GeV electrons + multi-TW optical LASER

J. D. Jackson, Classical Electrodynamics 3rd. Edition

$$\mathcal{E}_{rest\,fr.} = \mathbf{\gamma} \mathcal{E}_{lab\,fr.}$$

Important consequence of having a relativistic probe:
 → any field background can be approximated as a plane wave

Laser Diagnostics

λ [μm]

- LASER characterization quantities: energy, pulse length, spot size ٠ \rightarrow many (partially redundant) measurements on re-imaged laser pulse
- LASER intensity uncertainty has a large impact on sensitivity! ٠
- goal: \leq 5% absolute uncertainty on LASER intensity, \leq 1% shot-to-shot uncertainty ٠ **DESY.** \rightarrow achievable with foreseen diagnostics suite

What is necessary to make a LUXE-NPOD experiment work?

Photon beam creation

Conditions for photon beam creation ("time hierarchy"):

- Laser oscillation much faster than GeV radiation time-scale:
 →Laser can be treated as a background field
- γ radiation time-scale smaller than laser pulse length:
 → laser pulse is a thick target, electrons radiate most of their energy (LUXE NPOD: not the case, dump electrons off-axis)
- γ radiation time much shorter than pair-production time
 → photons free-streaming in laser pulse

What is necessary to make a LUXE-NPOD experiment work?

Dump and detector geometry optimization

Geometry considerations:

- Shorter dump: ALPS with larger couplings can escape the dump and decay in the decay volume
- Longer decay volume: ALPS with smaller couplings can decay in the decay volume

What is necessary to make a LUXE-NPOD experiment work?

Backgrounds

DESY.

Background rejection:

- Background Types: mis-identified neutrons, charged particles, real background photons
- Geant4 simulations for LUXE phase-1 with simplified detector configuration (W beam dump, $L_D=1m$, $L_V=2.5m$, $R_V=1m$)
- Photons: soft background
- Neutron background can be mitigated by energy cut E>0.5 GeV

LUXE Particle Detectors

- goal: detection of electrons, positrons and photon fluxes and energy spectra
- particle fluxes vary between ~0.001 e⁺ and 10^9 (e⁻ and γ) per laser shot!
- use technologies adapted to respective fluxes of signal and background

- Goal: kick out 1 bunch at angle -6.742° and transport to LUXE experimental area
- Lattice: Fast kicker magnet, Septa (asymmetric deflection magnets), Dipoles (deflection), Quadrupoles (focusing)
- Performance: beam spot size: $\sigma_x = 9.3 \mu m$, $\sigma_y = 8.1 \mu m$
 - pulse size 130fs
 - jitter parameters (measured): shot-to-shot position variation: $1\mu m$
 - time-of-arrival jitter: 20fs
 - energy variation: 0.01%

DESY.

Beam properties after extraction line fulfil requirements for LUXE physics

- pitch size (27 x 29 µm), 5 µm resolution
- tracking: $\varepsilon > 98\%$, $\frac{\delta p}{n} \approx 0.3\%$

DESY.

very small background (<0.1 event / bunch crossing)

Si – W High-granularity Calorimeter:

- 20-layer sampling calorimeter high granularity: independent energy measurement through shower and position
- shower medium: 3.5mm Tungsten plates $(1X_0)$, active medium: Silicon sensors $(5x5cm^2, 320\mu m \text{ thick})$
- read out by FLAME ASIC (developed for FCAL)

Positron detectors: High signal efficiency, high resolution!

10

12

14

16 E [GeV]

- finely segmented ($\emptyset = 4mm$) Air-filled channel (reflective tubes as light guides) \rightarrow charged particles create Cherenkov light
- Active medium Air: low refractive index reduce light yield, suppress backgrounds (Cherenkov threshold 20 MeV)

Electron detectors: High rate tolerance, large dynamic range!

Photon Detection System

Gamma Beam Profiler

Gamma detector technologies:

- Gamma profiler (sapphire strips)
 - \rightarrow y beam location and shape \rightarrow precision measurement of Laser intensity
- Gamma spectrometer with scintillator screens behind converter \rightarrow flux, energy spectrum ($\frac{\delta E}{E} < 2\%$)
- Gamma dump backscattering calorimeter \rightarrow photon flux

Page 30 Page 30

8±5

0 02

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

10⁴

10²

10⁶10

10⁵

10⁴

10³

10²

x (cm)

x (cm)

ξ=10

0.6 LUXE TOR

LUXE TDR

y (cm)

0.6

Expected Results

- Number of Breit-Wheeler pairs produced in photon-Laser collisions
- assuming 10dy of data-taking and 0.01 background events/ bunch crossing
- 40% correlated uncertainty to illustrate effect of uncertainty on $\boldsymbol{\xi}$

- Compton edge position as function of $\boldsymbol{\xi}$ in electron-laser collisions
- assuming 1h data-taking, no background
- 2% correlated uncertainy to illustrate impact of energy resolution

SFQED parameters

Intensity parameter:

$$\xi = \sqrt{4\pi\alpha} \left(\frac{\mathcal{E}_L}{\omega_L m_e}\right) = \frac{m_e \mathcal{E}_L}{\omega_L \mathcal{E}_{cr}}$$

.

٠

- measure of coupling between probe and Background (laser) field (also: square root of laser intensity)
- $\xi \ge 1$: non-perturbative regime

Note:

 $\begin{array}{l} \mathcal{E}_L: \text{Laser field} \\ \mathcal{E}_{cr}: \text{Schwinger critical field} \\ \theta: \text{Laser - probe crossing angle} \\ \omega_L: \text{Laser frequency} \\ E_{e/\gamma}: \text{probe electron (photon)} \\ & \text{energy} \end{array}$

Quantum parameters:

$$\chi_e = (1 + \cos \theta) \frac{E_e}{m_e} \frac{\mathcal{E}_L}{\mathcal{E}_{cr}}$$

$$\chi_{\gamma} = (1 + \cos \theta) \frac{E_{\gamma}}{m_e} \frac{\mathcal{E}_L}{\mathcal{E}_{cr}}$$

- ratio of background laser field and Schwinger critical field
 - $\chi \ge 1$: non-linear quantum effects become probable (e.g. pair production)

Energy Parameter $\eta = \frac{\chi}{\xi} = (1 + \cos \theta) \frac{\omega_L E_{e/\gamma}}{m_e^2}$

 (dimensionless) energy of collision between probe particle and background

Different combinations of ξ and χ result in different types of non-linear behavior!

Compton scattering in strong fields

• Consider Compton scattering in plane-wave background field: $A(x) = A_0 \sin(k \cdot x)$

Strong field ($\xi \ge 1$): Need to take into account all order diagrams!

The Furry picture

- How to do calculations? Solve equations of motion (Dirac equation) in field background
 → analytical solutions exist in plane wave background ("Volkov wave functions")
- derive Feynman rules for "dressed" states ("Furry expansion") \rightarrow treat background exactly, particle scattering perturbatively ($\alpha \ll 1$)

TDR: EPJST. 230, 2445-2560 (2021)

LUXE Status & Planning

- LUXE initiated in 2017
- 2024: international collaboration with ~100 members \rightarrow significant contributions by external partners
- Technical Design Report (TDR) released in 2023
- approval process at DESY and EuXFEL is progressing, \rightarrow funding acquisition ongoing
- foresee staged construction in EuXFEL shutdowns ٠ \rightarrow first phase-0 data-taking could start after 3-year construction period

LUXE

Experiment

The LUXE Collaboration

H. Abramowicz¹, M. Almanza Soto², M. Altarelli³, R. Aßmann⁴ A. Athanassiadis* 4, G. Avoni 5, T. Behnke 4, M. Benettoni 6, Y. Benhammou J. Bhatt 7, T. Blackburn 8, C. Blanch 2, S. Bonaldo 6, S. Boogert 9,10, O. Borysov M. Borysova^{† 4,11}, V. Boudry ¹², D. Breton ¹³, R. Brinkmann ⁴, M. Bruschi ⁵ F. Burkart⁴, K. Büßer⁴, N. Cavanagh¹⁴, F. Dal Corso⁶, W. Decking⁴, M. Deniauc O. Diner 16, U. Dosselli 6, M. Elad 1, L. Epshteyn 16, D. Esperante 2, T. Ferber 15 M. Firlej 18, T. Fiutowski 18, K. Fleck 14, N. Fuster-Martinez 2, K. Gadow 4, F. Gaede A. Gallas 13, H. Garcia Cabrera 2, E. Gerstmayr 14, V. Ghenescu 19, M. Giorato N. Golubeva⁴, C. Grojean^{‡ 4}, P. Grutta⁶, G. Grzelak²⁰, J. Hallford⁴⁷, L. Hartman B. Heinemann¹^{4,21}, T. Heinzl²², L. Helary⁴, L. Hendriks^{4,7}, M. Hoffmann¹¹ D. Horn¹, S. Huang¹, X. Huang^{4,21,23}, M. Idzik¹⁸, A. Irles², R. Jacobs⁴, B. King² M. Klute¹⁷, A. Kropf^{4,21}, E. Kroupp¹⁶, H. Lahno¹¹, F. Lasagni Manghi arXiv:2308.00515 [hep-ex] J. Lawhorn 17, A. Levanon 1, A. Levi 16, L. Levinson 16, A. Levy 1, I. Levy 2 A. Liberman 16, B. Liss 4, B. List 4, J. List 4, W. Lohmann** 4, J. Maalmi 1 T. Madlener⁴, V. Malka¹⁶, T. Marsault^{++ 4}, S. Mattiazzo⁶, F. Meloni⁴, D. Miron M. Morandin⁶, J. Moroń¹⁸, J. Nanni¹², A.T. Neagu¹⁹, E. Negodin⁴ A. Paccagnella ⁶, D. Pantano ⁶, D. Pietruch ¹⁸, I. Pomerantz ¹, R. Pöschl ¹¹ P.M. Potlog 19, R. Prasad 4, R. Quishpe 17, E. Ranken 4, A. Ringwald 4, A. Roich 1 **Technical Design Report for the LUXE** F. Salgado 23,25, A. Santra 16, G. Sarri 14, A. Sävert 23,25, A. Sbrizzi 5, S. Schmitt I. Schulthess ⁴, S. Schuwalow^{# 4}, D. Seipt ^{23,25}, G. Simi ⁶, Y. Soreq ²⁶, D. Spataro ⁴ M. Streeter 14, K. Swientek 18, N. Tal Hod 16, T. Teter 23,25, A. Thiebault 13 D. Thoden ⁴, N. Trevisani ¹⁷, R. Urmanov ¹⁶, S. Vasiukov ⁶, S. Walker ⁴, M. Warren M. Wing 47, Y.C. Yap 4, N. Zadok 1, M. Zanetti 6, A.F. Żarnecki 20, P. Zbińkowski 20 K. Zembaczyński 20, M. Zepf 23,25, D. Zerwas 3 13, W. Ziegler 23,25, M. Zuffa 5

E144 experiment at SLAC

- E144: SLAC experiment in 1990's using 46.6 GeV electron beam (e+LASER only!)
- reached $\chi \le 0.25, \xi < 0.4$
- observed process $e^- + n\gamma_L \rightarrow e^- e^+ e^-$
- observed start of the ξ^{2n} power law, but not departure

LUXE : Three orders of magnitude more powerful laser than E144, will enter non-perturbative regime

E-320 experiment at SLAC

- E320: ongoing SF-QED experiment at SLAC using 13 GeV electron beam (FACET-II) and 16 TW optical Laser
- first electron-LASER collisions in 2022
- By design: similar parameter reach as LUXE (after Laser and Detector upgrades)
- Main differences to LUXE:
 - · electron-Laser collision mode only
 - E-320 data-taking time limited due to other users of FACET-II

Synchronization

- critical: spatial and temporal overlap of electron beam and LASER
- temporal overlap requirement (30fs LASER pulse, >100fs electron bunch)
 → at least half the pulse width (50fs)
- XFEL developed world-leading syncronization system
 → sychronization of two RF signals to <13fs
- synchronise the XFEL.EU master clock oscillator to the oscillator of the Laser
 → already used across XFEL to sychronize LASERS and accelerator
 → fine-tune repetition rate via piezo-elements controling LASER cavity size
- stability against temperature variations: isolation and active feedback loops
- spatial overlap: beam pointing monitoring systems for both electron and LASER beam

LUXE-NPOD Dump and Detector Optimization

- Optimised photon dump geometry to minimise background and maximise signal \rightarrow Computing challenge: simulate O(10⁹) electrons with Geant4 for each geometry
- Optimal detector characteristics for signal detection and background rejection:
 - Signal efficiency (Photon separation ~2cm)
 - Background suppression (neutrons: shower shape and timing <1ns, radius r<0.5m)
 - Precise ALP invariant mass (photon direction and energy, non-resonant rejection)
 - \rightarrow Ideal: Tracking calorimeter

Existing detector options:

- Alice FoCal.
- H1 SPACAL.
- Calice SiPM on Tiles

How does LUXE relate to LHC light-by-light scattering?

- LHC: photon-photon interaction in ultra-peripheral heavy-ion collisions (UPC) → e.g. yy→yy, yy→µµ
- UPC: fields above the Schwinger limit can be reached in the lab
- main difference to LUXE: in UPC, EM field is extremely short-lived, cannot travel over macroscopic distances
- · this regime is still covered by linear perturbative QED

Figures from: arXiv:2010.07855v3 (Also a nice review to read, if you want to know more!)

DESY.

Ritus-Naroshny Conjecture

- Ritus-Naroshny Conjecture: in the vicinity of sufficiently strong fields, the Furry expansion breaks down ٠ \rightarrow perturbative QED coupling α is modified by the field strength: $\alpha \rightarrow \alpha \chi^{2/3}$
- Conjecture interpreted to hold for any "locally constant" background • (field constant over formation length scale of physics process)

HIC SUNT LEONES

Creating strong fields in experiments

3) Relativistic curved mirrors

- Doppler-boosting Laser intensity using curved relativistic mirrors
- "Plasma mirrors" ejected by impinging laser light on solid state taget
 → currently under study in simulation (cf.)
- solid-state fixed target experiment, or collision with particle beam
 → reach extreme regions of SF-QED phase space

Vincenti et al, Nat. Comm. (2014) Fedeli et al, PRL (2021)

C. Thaury et al, Nat. Phys (2007) Dromey et al, Nat. Phys (2009)

Contact

Deutsches Elektronen-Synchrotron DESY Ruth Jacobs DESY-FHR ruth.magdalena.jacobs@desy.de

www.desy.de