The alignment of the modules of the Cool Copper Collider C³ with the Rasnik 3-point alignment system

Harry van der Graaf , Niels van Bakel , Bram Bouwens , Martin Breidenbach , Andrew Haase , Joris van Heijningen , Anoop Nagesh Koushik, Emilio Nanni , Tristan du Pree , Nick van Remortel , Caterina Vernieri

LCWS 2024, University of Tokyo, Japan

University of Antwerp Faculty of Science

The accelerator Structure

Figure 4: Both halves of the C^3 prototype structure prior to braze. The one meter structure consists of 40 cavities. A rf manifold that runs parallel to the structure feeds 20 cavities on each side. The structure operates at 5.712 GHz.

The C³ Cryo Module, 9 m long.....

.....including 8 Accelerator Structures and 4 Quads

2000 AccStructures and 1000 Quads must be aligned over a length of 2.3 km, with 10 μm precision

1983: Alignment of the Muon Spectrometer of the *L*₃ experiment at CERN

.....original idea was from Draper Lab/MIT, Cambridge, Mass

1993: CCD-Rasnik Three Point Alignment system for ATLAS

- Coded mask is projected via lens on pixel sensor;
- In principle, all 6 DoFs of mask & pixel sensor + x,y,z of lens can be determined;
- x,y,z and rotZ (θ_z, not for lens) are measured

M. Beker et al., "The Rasnik 3-point alignment system", JINST 14 P08010 (2019)

ATLAS experiment: 8000 Rasniks, none fails since start

... we need to know where our detectors are!

Long distance Rasniks

Lens diameter 2 – 5 % of distance mask-sensor: too large!

Alignment over long distance (> 100 m): RasClic, later RasDif:

- replace lens by zone plate
- replace coded mask by monochromatic spherical-wave light source (1 \$ laser diode)

Figure 4.8: (a) Design and dimensions of the diffraction pattern, (b) simulations of the resulting diffraction pattern, (c) a photograph of the plate holder and (d) a photograph of the pixel image sensor read-out at the PC

(c)

Pioneered by A. Seryi, SLAC:

Investigation of slow motions of the SLAC linac tunnel, SLAC-PUB-8597 8597 (1) (2000) P06034, arXiv:physics/0008195.

(d)

Figure 4.7: Schematic overview of the RasCLiC set-up, showing the operation of the field stops

140 m test set-up (TT1 @ CERN)

From 3-point alignment system to n-point alignment system:

chainplates

Each structure is 5D defined in space, with redundancy

Operating Rasnik in LN₂ and in air and in vacuum)

Cam

Zone Plate

Laser diode

Cam: CMOS image pixel sensor + supporting pcb

Microsoft webcam HD-3000 Model 1456 or earlier (2011) has been reported to operate in LN₂

after being demolished carefully

Since this webcam works in LN₂, it can be well applied in R & D studies inside cryostats (i.e. bubble formation)! Frame rate 30 Hz

Zone Plate

so far: glass coded mask

non plan-parallel

Light source: laser diode

critical:

- direction of fiber
- fiber tip: perpendicular cleaved

best results so far in $\text{LN}_{2.}$ Still bubbles, but image moves less than 10 μm

Sources of disturbances

- bubbles:
 - big bubbles, due to boiling, passing light path
 - small bubbles due to nucleation points
 - density fluctuations: due to
 - thermal convection
 - induced by passing bubbles

Possibly of no importance

Nucleation: spontaneous bubble formation

Shielding with tubes: internal reflection against inside of tube wall

apply *field stops*

Shielding with vacuum tubes or with fused silica rod: Snellius boundary crossing

this works: 100 % of light path shielded with aluminium (black anodized) tube (20 x 20 mm²)

Ongoing C3 R&D project:

the Quarter Cryo Module QCM

Phase 1: dummy AccStructures: testing cooling, mechanics, vibrations

Phase 2: real operational AccStructures

The Stick

A Stick includes 4 items:

- a CMOS image sensor chip
- a transparent pattern forming a zone lens
- a laser diode
- a mounting interface

Calibration Station (on granite table)

Image shift on sensor equals 4x the alignment error S after rotating three calibrators 180 deg around Z axis

Conclusions

- Rasnik components (image sensor and laser diode) were found to operate in LN₂;
- methods of beam shielding were developed, protecting the light path against disturbing bubbles;
- there is consensus on a design for Rasnik for the QCM R&D project.