Wakefield study at ATF2 beamline

Outline

- 1. Introduction & Motivation
- 2. Wakefield sources in the ATF beamline
- 3. Introduce the impact of each wakefield source on the IP beam size
- 4. Evaluation of the wakefield effects as a single wakefield source
- 5. Evaluation of the wakefield effects caused by the orbit fluctuation
- 6. Wakefield mitigation at ATF final focus beamline
- 7. Summary

Yuki Abe (KEK)

Introduction : Wakefield and its effect on the beam

 Wakefield : excited electromagnetic fields when the beam passes through the section of structural change

• Not negligible : Wakefield effects on the nanometer small beam

- Wakefield kicks become stronger depending on bunch intensity and offset from the geometrical center of the wakefield source
- Induce the beam size growth and bunch position change

Evaluation of the wakefield effects on the nanometer small beam

• This study is important for the next generation accelerators

- Nanometer small beam : the key technology for the Linear Collider
- Wakefield effects on the nanometer small beam : Not negligible small

• ATF is the best research environment for this study

- Generate the low emittance and nanometer size beam
- Measure the bunch position and beam size in nm order with high precision monitors

Research activity as my PhD study

1. Evaluation of the wakefield effect as a single wakefield source Experimentally confirmed the constructed wakefield models

2. Evaluation of wakefield effects caused by the orbit fluctuation Estimated result showed the effect : Not negligible small So experimentally confirmed the effect

Wakefield sources in the ATF final focus beamline

 $\mathbf{2}$

Wakefield calculation by 3D electromagnetic field calculation (GdfidL)

• Created 3D models of the vacuum area

Reproduce internal geometry of wakefield sources (step and gap of components)

Estimated the impact of each wakefield source on the IP beam size

• Created 3D models of the vacuum area

Reproduce internal geometry of wakefield sources (step and gap of components)

Evaluation of the wakefield effects as a single wakefield source

Installed a movable wakefield source to generate targeted wakefield kick

- Evaluate the acted wakefield kick at the single wakefield source
 - Measure the beam orbit change downstream from the wakefield source after the wakefield source is moved

The internal setup of the wakefield study chamber

To evaluate the effect of Cavity BPM (major wakefield source) Produced Cavity BPM(pill box) structure

Straight pipe for the reference

Evaluation results of the wakefield effects as a single wakefield source

- Experimental, and Simulation result based on the constructed model
- Confirmed that the constructed wakefield model well reproduced the experimental results

Evaluation of the wakefield effects caused by the orbit fluctuation

Wakefield effects caused by static and dynamic orbit change

• Static effect

Excited due to misalignment of wakefield source or beam orbit distortion

• Dynamic effect

Excited due to the shot-by-shot orbit fluctuation by injection

The orbit fluctuation caused by the injection beam fluctuation

Impacts of the pulse-by-pulse orbit fluctuation in ATF-FF beamline

- Phase advance to IP in final focus optics is half-integer
 - Almost wakefield sources located at FD phase (phase advance to IP: half-integer)

- Bunch angle at IP is fluctuated when orbit fluctuated at FD phase
 - To quantitatively evaluate the wakefield effects due to orbit fluctuations
 - Confirm relationship between bunch angle fluctuations and beam size at IP

Estimated wakefield effects caused by shot-by-shot orbit fluctuation

- Beam size at IP increases depending on the bunch intensity
- Beam size growth becomes stronger due to the bunch angle fluctuation at IP
 →orbit fluctuation at FD phase becomes bigger

Experimental evaluation of wakefield effects caused by orbit fluctuation

Strength of beam size growth and IP angular fluctuation

- Generated artificial orbit fluctuations by pairs of steering magnet Only change the FD phase orbit (bunch angle at IP) by artificial orbit fluctuations
- Experimentally demonstrated the effects caused by the orbit fluctuation is significant large
 - Experimental result (average) : 0.077±0.024 nm/10^9/bunch/urad
 - Simulation result : 0.100 nm/10^9/bunch/urad

Wakefield mitigation at ATF final focus (FF) beamline

- Wakefield sources located in FF (Cavity BPM, vacuum flange etc) Strong impact on the nanometer small beam
- Optimizing chamber layout at the large beta section in ATF-FF
 - Replace ICF type vacuum (flange, bellows) components to clamp chain type
 - > Change base beam pipe inner diameter : $\Phi 23.9 \rightarrow \Phi 20$
 - Insert RF shield to not replaceable vacuum components (CBPM)

Summary

- This study is important for the next generation accelerators
- Evaluated the wakefield effects on the nanometer small beam using the best research environment as ATF
 - Evaluation of the wakefield effect as a single wakefield source
 Confirmed that the constructed wakefield model well reproduced the experimental results
 - 2. Evaluation of wakefield effects caused by the orbit fluctuation Demonstrated by experiment and simulation, the effect is significant large

Further works

- Just in progress, beamline upgrade to reduce the excited wakefield
 - Ordered new vacuum component (bellows, beam pipe)
- Further investigation of the wakefield effects on the nanometer small beam

Backup

Inner structure model for wakefield calculation by GdfidL

Vacuum port (w/wo shield)

Vacuum flange (w/wo shield)

Φ23.9

Φ41.3

Collimator (half gap 3mm)

Septum magnet chamber

Optical Transition Radiation Monitor (with plug)

