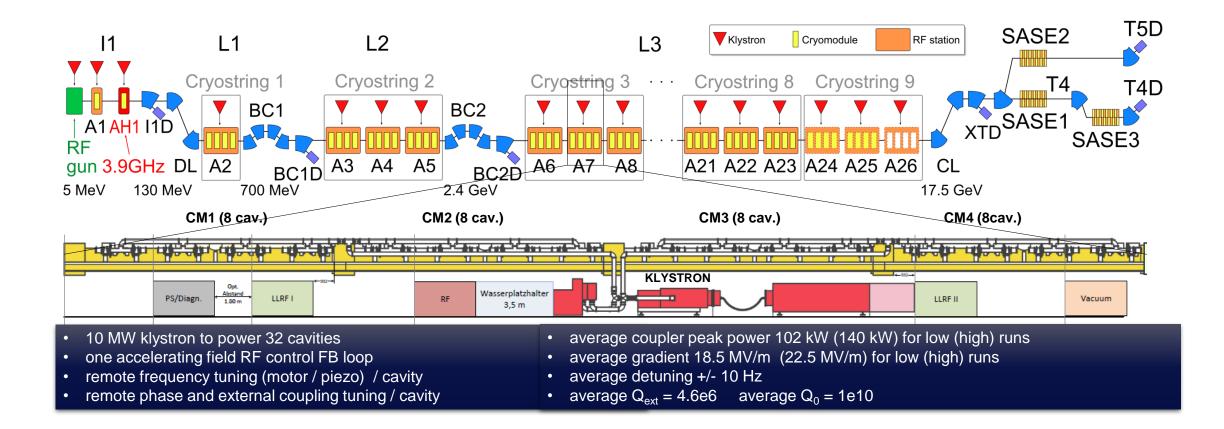
Strategy for cavity R&D towards an upgrade of the European XFEL current performance and the need for a new specification

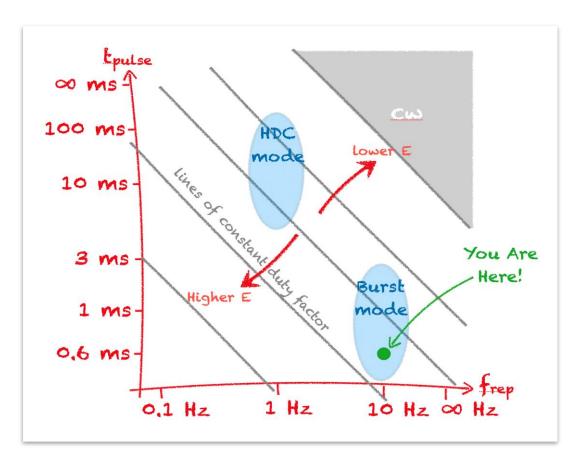
LCWS 2024

Lea Steder, Detlef Reschke

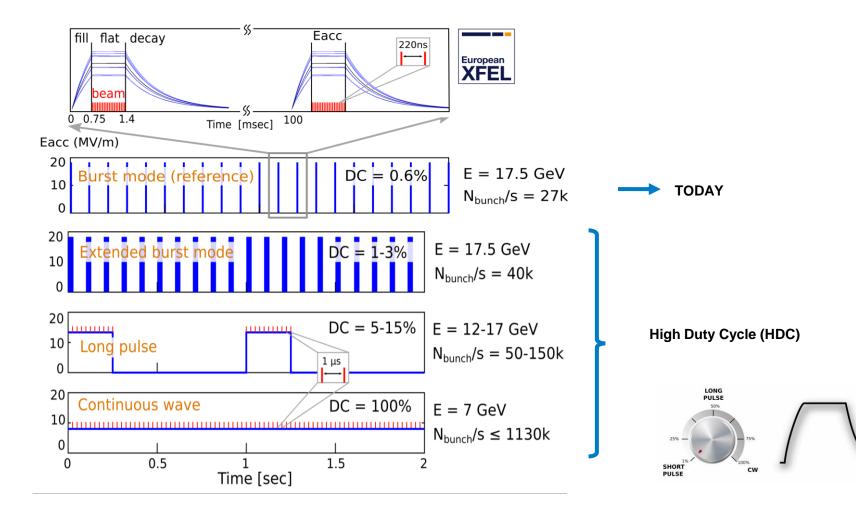
with slides / input from Hans Weise, Julien Branlard, Nick Walker, for the DESY SRF team


July 10th, 2024

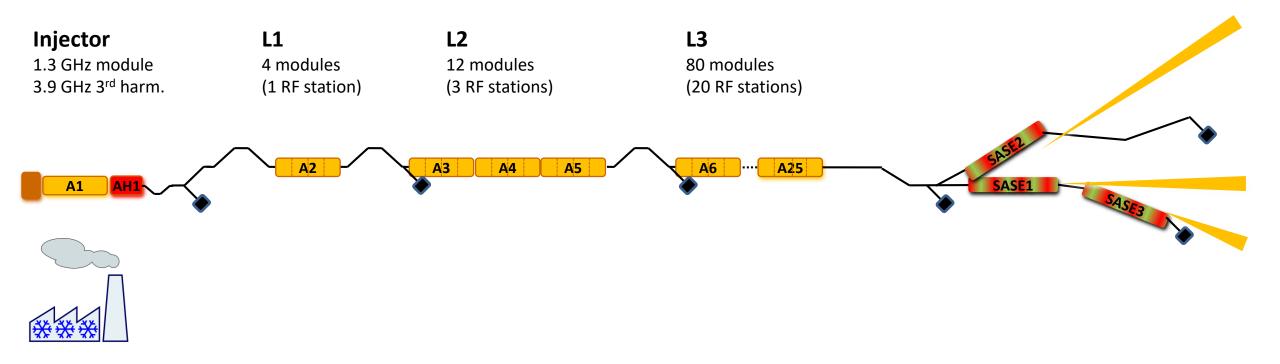
HELMHOLTZ

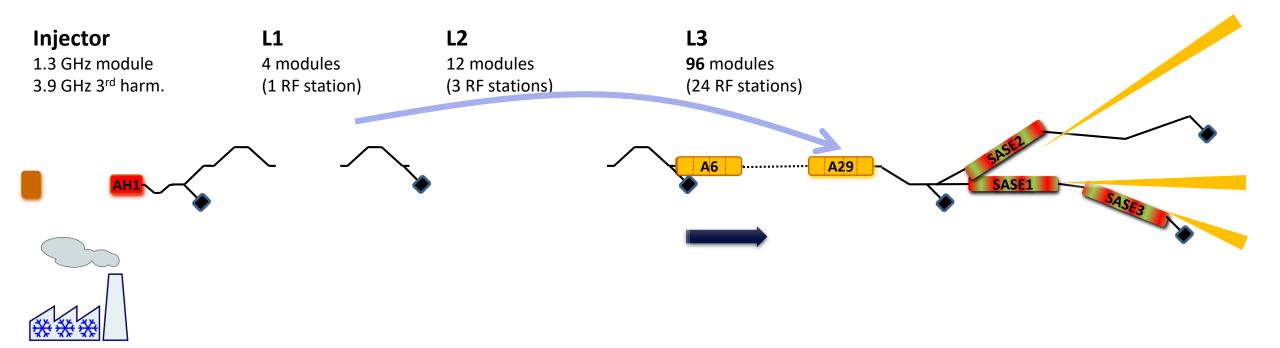

Introduction

The European XFEL Accelerator : one RF station


R&D towards HDC

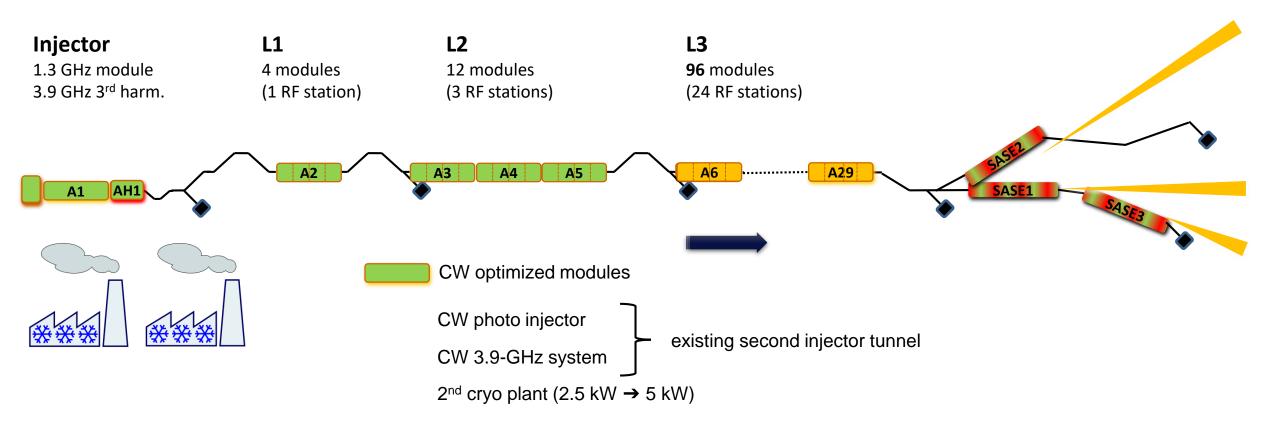
R&D for the High Duty-Cycle program (i.e. cw and long pulse)


Motivation

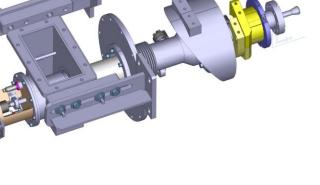

DESY. Strategy for cavity R&D towards an upgrade of the European XFEL – current performance and the need for a new specification Lea Steder, Detlef Reschke

European

original CW upgrade proposal (canonical upgrade)



original CW upgrade proposal (canonical upgrade)


original CW upgrade proposal (canonical upgrade)

requirements for hdc optimized modules: HDC and pulsed Preliminary list

- to be emphasized: requirement for high energy (pulsed) mode and hdc/cw mode in one linac
- performance requirements:
 - gradient E_{acc} > 20 MV/m
 - quality factor $Q_0(\sim 20 \text{ MV/m}) \ge 3 \cdot 10^{10}$
 - significantly lower (no) field emission than existing cryomodules
 - PED conformity: no annealing above 800 °C
- as less as practicable modifications to EuXFEL cavity and cryomodule
 → first ideas, but design not started
- preliminary: Use existing EuXFEL-coupler design with thicker Cu coating
- new cw compatible 3.9 GHz cavities required
 - \rightarrow preliminary base: follow available 3rd harmonic cavity and module designs

R&D for the High Duty-Cycle program (i.e. CW and long pulse)

accelerator modules

- high Q_L operation
- cw diagnostics and resonance control
- studies towards operating series cryomodules in CW

s.c. cavities

- renewal of DESY XFEL cavity specification incl. PED
- extensive R&D using a large number of single cell cavs
- new/optimized treatment recipes

s.c. electron gun

- SRF gun as the source
- SRF injector design
- Ts4i

R&D for the High Duty-Cycle program (i.e. CW and long pulse)

accelerator Modules

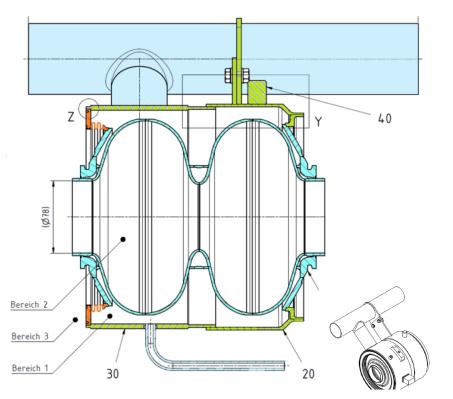
- high Q_L operation
- cw diagnostics and resonance control
- studies towards operating series cryomodules in CW

s.c. cavities

- renewal of DESY XFEL cavity specification incl. PED
- extensive R&D using a large number of single cell cavs
- new/optimized treatment recipes (industrialization!)

s.c. electron gun

- SRF gun as the source
- SRF injector design
- Ts4i



towards an updated DESY XFEL spec

European XFEL uses 800 cavities ordered in 2010; the tendering started 15+ years ago

- the often-called DESY specs were the role model for LCLS-II (HE), SHINE et al.
- **PED certification** was/is a major issue for DESY, a renewal is a must in order to prepare for an EuXFEL upgrade cavity ordering
- basis for tendering of ten new nine-cells (early 2025)
- **lessons learned** from EuXFEL, LCLS-II (-HE), SHINE production to be included
- company experience counts
- **next generation of experts** to be trained (mix of new and experienced colleagues; new roles)
- new and optimized surface treatment recipes to be finalized; decision for next EuXFEL ordering

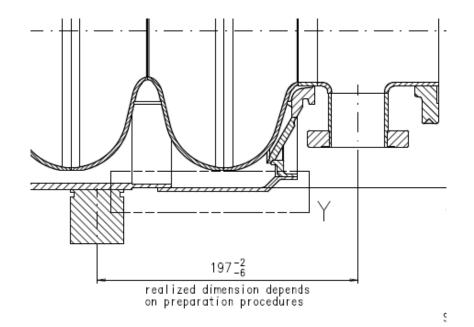
"test piece" production for vendor qualification

progress of the updated DESY XFEL spec

a team effort

- one consistent document
- includes lessons-learnt of XFEL-production (e.g. not well-defined dimensions for He-tank brackets)
- vendor independent workflow description
- bellow unit at He-tank simplified
- additional acceptance level for a R&D phase before He-tank integration
- surface treatment:
 - "final EP" as initial surface treatment only
 - cold EP process adopted
 - Mid-T treatment during R&D phase at DESY
- emphasis kept on well-defined processes during whole production incl. on-site visits

EuXFEL specification 2009


- several separate documents (fabrication, treatments, ...)
- modifications during the tender process, adaption to infrastructure at vendor and during series fabrication
- delivery of tank-integrated cavities
- no experience in industry with large-scale cavity surface treatment
- included "Flash-BCP" as final surface treatment

progress of the updated DESY XFEL spec

a team effort

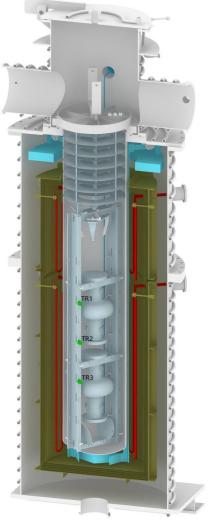
- one consistent document
- includes lessons-learnt of EuXFEL-production (e.g. not well-defined dimensions for He-tank brackets)
- vendor independent workflow description
- bellow unit at He-tank simplified
- additional acceptance level for a R&D phase before He-tank integration
- surface treatment:
 - "final EP" as initial surface treatment only
 - cold EP process adopted
 - Mid-T treatment during R&D phase at DESY
- emphasis kept on well-defined processes during whole production incl. on-site visits

progress of the updated DESY XFEL spec

a team effort

- one consistent document
- includes lessons-learnt of XFEL-production (e.g. not well-defined dimensions for He-tank brackets)
- vendor independent workflow description
- bellow unit at He-tank simplified
- additional acceptance level for a R&D phase before He-tank integration
- surface treatment:
 - "final EP" as initial surface treatment only
 - cold EP process adopted
 - Mid-T treatment during R&D phase at DESY
- emphasis kept on well-defined processes during whole production incl. on-site visits

EuXFEL specification 2009


- several separate documents (fabrication, treatments, ...)
- modifications during the tender process, adaption to infrastructure at vendor and during series fabrication
- delivery of tank-integrated cavities
- no experience in industry with large-scale cavity surface treatment
- included "Flash-BCP" as final surface treatment

cavity treatment towards hdc operation

focus on mid-T heat treatment

- **refurbished UHV niobium retort furnace** is used to anneal cavities up to 800°C.
- loading of the furnace is done directly in the DESY ISO4 clean room i.e. extremely clean environment
- single-cell cavities / pairs of single-cell / 9-cell cavities can be treated.
- mid-T treatment in UHV at 250-350°C (rem.: so far all studies without additional gas inlet - which is possible)

oxygen diffusion length as key parameter

huge DESY mid-T campaign

mid-T campaign

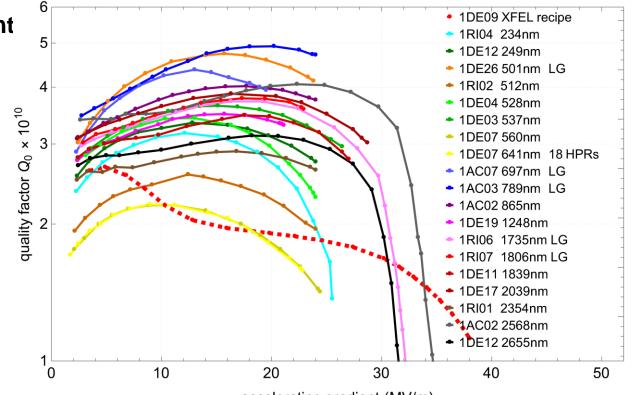
- all 19 treatments on single-cell cavities after "reset"
- 5 treatments on large grain (LG) cavities
- wide range for T: 250°C to 350°C and t: 3h to 20h
- use of calculated oxygen diffusion length ℓ for classification

DESY mid-T workflow

- "reset": 800°C anneal / short, cold EP (20 μm)
- HPR & assembly
- baseline vertical test
- mid-T treatment with different temperatures and durations (T, t)
- HPR & assembly
- vertical test (VT)

Cavity	Nominal	l (nm)		
	treatm.			
1RI04	<3h <250°C	234		Fig. 9
1DE12	<3h 250°C	249		short <i>l</i>
1DE26 (LG)	<3h <300°C	501		
1RI02	20h 250°C	512		
1DE04	<3h <300°C	528		
1DE03	<3h <300°C	537		Fig. 10
1DE07	20h 250°C	560	1	nedium <i>l</i>
1DE07 18xHPR	<3h <300°C	641		
1AC07 (LG)	<3h <300°C	697		
1AC03 (LG)	<3h <300°C	789		
1AC02	3.25h <325°C	865		
1DE19	4.5h <335°C	1248		Fig. 4
1RI06 (LG)	20h 300°C	1735		
1RI07 (LG)	3h <350°C	1806		
1DE11	3h <350°C	1839		Fig. 11
1DE17	20h 300°C	2039		long <i>l</i>
1 RI 01	3h 350°C	2354		
1AC02	3h ≥350°C	2568		
1DE12	3h >350°C	2655		

Table 1: Cavity treatments sorted by calculated diffusion length l and grouped according to l.



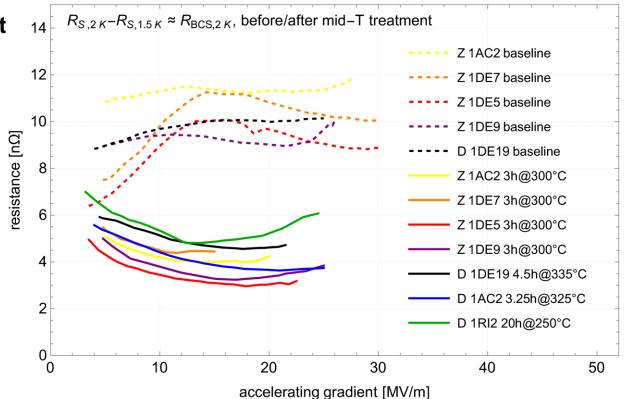
quality factor enhancement and anti-Q₀-slope

special characteristics of mid-T heat treated cavities

standard EuXFEL recipe vs mid-T heat treatment

- significantly enhanced quality factors
- anti-Q-slope
- lower gradients
 - partially stopped to avoid quenching

accelerating gradient (MV/m)

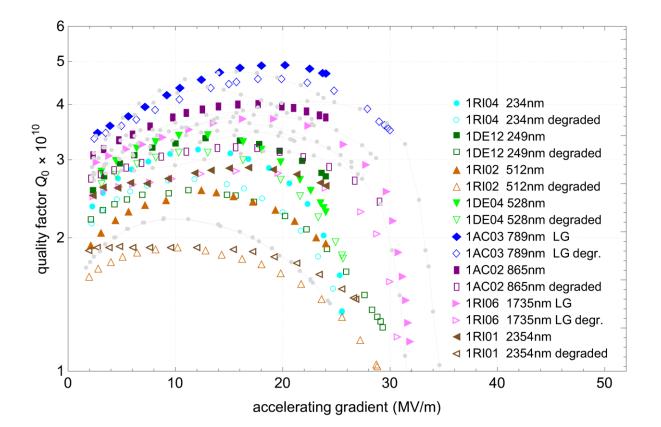


very low BCS surface resistance

special characteristics of mid-T heat treated cavities

standard EuXFEL recipe vs mid-T heat treatment

- significantly enhanced quality factors
- anti-Q-slope
- lower gradients
- $R_{S}(T,B) = R_{BCS}(T) + R_{res} + R_{flux}(B)$
- Iower R_{BCS}
- **but** partially higher R_{const}



page 18

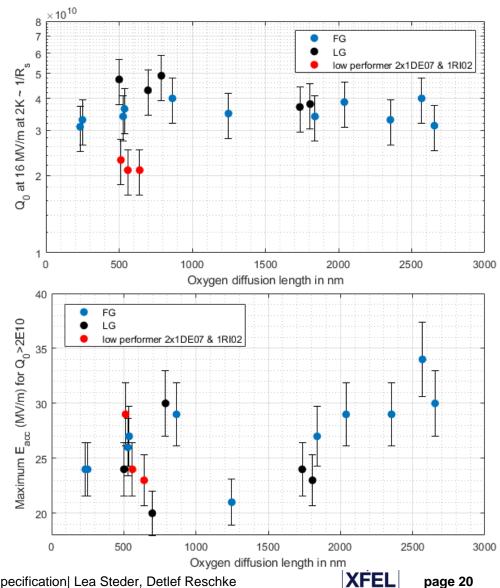
sometimes degradation after quenches

special characteristics of mid-T heat treated cavities

- significantly enhanced quality factors
- anti-Q-slope
- lower gradients
- $R_{S}(T,B) = R_{BCS}(T) + \underbrace{R_{res} + R_{flux}(B)}_{Flux}(B)$
- lower R_{BCS}
- **but** partially higher R_{const}
- 8 of 19 cavities degrade after first quench
 - unclear origin
 - healing via thermal cycling to 30 K

European XFEL

correlation of performance to oxygen diffusion length missing

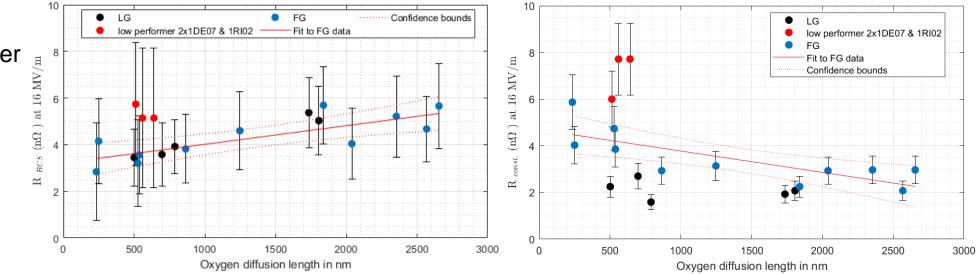

gap between 900 and 1700 nm to be filled

quality factor Q₀

- flat distribution over diffusion length
- only low performer deviating
- LG cavities on upper edge

$\text{maximal } \mathbf{E}_{\text{acc}}$

- spread between 20 and 35 MV/m
 - tendency at higher length towards larger gradients?

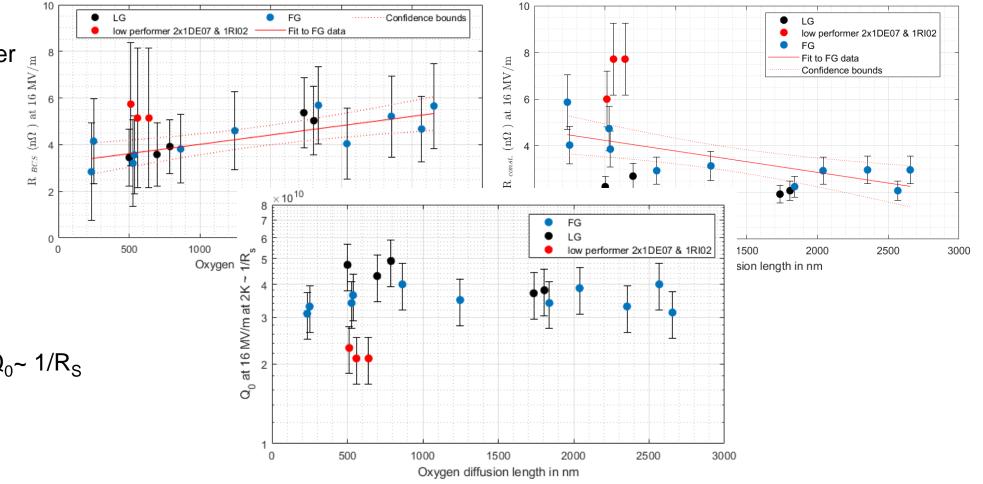


not much room for optimization

trends in resistances cancel each other

$\rm R_{BCS}$ and $\rm R_{const}$

- LG and low performer excluded
- opposing trends
- LG cavities profit from low R_{const}



not much room for optimization

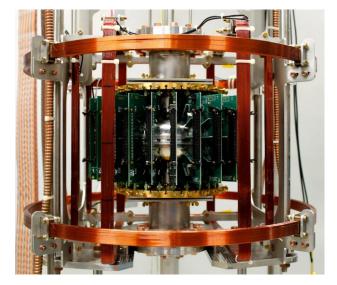
trends in resistances cancel each other

$\rm R_{BCS}$ and $\rm R_{const}$

- LG and low performer excluded
- opposing trends
- LG cavities profit from low R_{const}

• $R_S = R_{BCS} + R_{const}, Q_0 \sim 1/R_S$

page 22

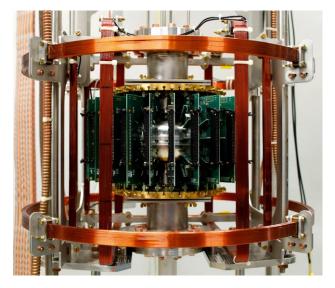

sensitivity to magnetic flux trapping is a challenge

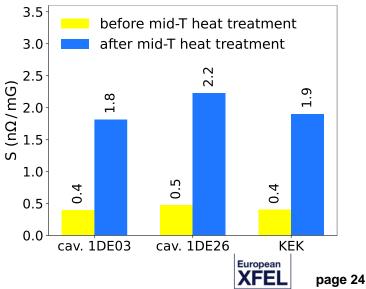
B-mapping studies show large impact of mid-T heat treatment

• definition:

 $S = \frac{\Delta R_S}{B_{trap}}$

- R_s measured via Q_0 with and w/o applied magnetic field (10 µT)
- B_{trap} obtained via B-mapping system
 - FG (1DE03) and LG (1DE26) cavity with medium I (< 3h, < 300°C)
 - measurements at KEK


sensitivity to magnetic flux trapping is a challenge


B-mapping studies show large impact of mid-T heat treatment

• definition:

 $S = \frac{\Delta R_S}{B_{trap}}$

- R_s measured via Q_0 with and w/o applied magnetic field (10 µT)
- B_{trap} obtained via B-mapping system
 - FG (1DE03), LG (1DE26) cavity with medium { (< 3h, < 300°C)
 - measurements at KEK
- increase in sensitivity: factor 4 5!
 - independent of cavity material
- magnetic environment also in accelerator very important
 - · flux trapping has to be avoided
 - otherwise Q₀ will drop significantly
- more studies to come for better statistics with wider range of l

summary

- (smooth EuXFEL linac operation => aiming for three 9s linac availability)
- broad R&D towards an hdc upgrade of the European XFEL started pulsed and hdc operation
- good progress of **reworked spec** for cavity production
- excellent furnace and cleanroom infrastructure as well as sufficient single-cells available
- R&D focus on **mid-T treatment**: **Arxiv publication** with more details this week
 - reproducible and very promising results on single-cells
 - high sensitivity S to magnetic flux is a challenge
 - next: transfer to nine-cells

Funding by the European XFEL R&D program and the Helmholtz MT ARD program acknowledged

thank you for your attention

Many thanks to all colleagues from <u>different groups at DESY</u> who have contributed to these results.

Contact

www.desy.de

Deutsches Elektronen-Synchrotron DESY

Lea Steder lea.steder@desy.de +49 (0)40 8998 3828 Detlef Reschke <u>detlef.reschke@desy.de</u> +49 (0)40 8998 2772