SM parameters

VBF&Dibosons

VBS&Tribosons

ATGC/AQGC

Conclusion

Electroweak measurements at the LHC and HL-LHC with ATLAS and CMS

Anne-Marie Magnan, Imperial College London I M P E R I A L

on behalf of the ATLAS and CMS Collaborations

8th-11th July 2024, LCWS 2024, Tokyo, Japan

- Hadron colliders: discovery machines.
- But what happens if all the "obvious" BSM signals are excluded ?
- The devil hides in the details!

9GAGGER The devil is always in the details

A.-M. Magnan

EW @ LHC and HL-LHC

10/07/2024, LCWS 2024 2/48

VBF&Dibosons

VBS&Tribosons

C/AQGC

 $\underset{\circ\circ}{\overset{\text{Conclusion}}{\overset{\circ\circ}}}$

The EW sector of the SM

- EW sector: 5 parameters $\Rightarrow \alpha_{\rm EM}$, G_F, m_W, m_Z, sin² $\theta_{\rm W}$
- Parameters are not independent.
- Precise predictions ⇒ high sensitivity to new physics !

At tree level
$$sin^2 heta_{
m W}=(1-rac{m_{
m W}^2}{m_Z^2})$$
 $m_{
m W}^2sin^2 heta_{
m W}=rac{\pilpha_{
m EM}}{\sqrt{2}G_{
m F}}$

SM parameters

VBF&Dibosons

VBS&Tribosons

ATLAS

Conclusion

Experimental inputs to the Theory

- The Standard Model is not self-contained: needs experimental inputs!
- Tree-level not sufficient: radiative corrections.
- Global EW fits ⇔ SM self-consistency check
- Any tension between direct and indirect constraints \Rightarrow new physics in higher order corrections.

With EW form factors

$$sin^{2}\theta_{\text{eff}}^{\ell} = sin^{2}\theta_{\text{W}}(1 + \Delta\kappa)$$

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_{F}m_{Z}^{2}}}\right)$$

EW @ LHC and HL-LHC

0/07/2024, LOW

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

The Theory-Experiment feeding loop

- Despite being hadron colliders, LHC and HL-LHC have much more to bring to the EW sector picture before the next generation of lepton collider comes into life.
- MC predictions and theory calculations confronted to new highs every data-taking year.

Eur. Phys. J. C78, 675 (2018)

 If ILC or CLIC or FCC-ee/CEPC came into life tomorrow, we would be in deep trouble for comparing with theory! Years ahead are crucial to build the required accuracy.

SM parameter

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

EW results shown today

DISCLAIMER

- Not possible to fully acknowledge the plethore of ATLAS and CMS results.
- Will concentrate on newest results mainly.
- Others flashed in summary plots.

SM parameters

VBF&Dibosons

VBS&Tribosons

Conclusion

- Since their discovery at UA1, excellent agreement data-MC from 0.63 TeV up to 13.6 TeV hadron collisions, using DYTURBO@NNLO in QCD + NNPDF4.0.
- At LHC, special low PU datasets for best accuracy.

CMS-PAS-SMP-22-017, $\mathcal{L} = 5.04 \text{ fb}^{-1}$

A.-M. Magnan

EW @ LHC and HL-LHC

SM parameters

VBF&Dibosons

VBS&Tribosons

GC/AQGC

ATLAS

Conclusion

W boson mass measurement

- Leptonic (e,µ) decays of the W.
- Challenging measurement at hadron colliders.
- Reanalysis of data used for 2017 measurement.
- Profile likelihood fits to p_T^{ℓ} and m_T .
- Signal MC templates for a range of m_W values, reweighted to the Breit-Wigner parametrisation of the W mass.

	ATLAS m _W 2017	ATLAS m _W 2023		
Statistical interpretation	χ ² fit with stat-only uncertainties, systematics added aposteriori	Profile max. likelihood (ML) fit - for the first time in context of m _W measurements; O(1000) NPs reduced to ~200 NPs with PCA		
Baseline PDF	CT10	CT18		
Electroweak theory unc.	Evaluated at truth level	Evaluated at detector level		
Multijet background	2023: Systematic shape variat function from CR to SR	tions using PCA, new transfer		
Detector calibration	Unchanged			
EW and top background	Unchanged			

Courtesy of O. Kuprash

A.-M. Magnan

EW @ LHC and HL-LHC

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

W boson width measurement

arXiv:2403.1508

- First measurement of Γ_W at LHC.
- Best single-experiment measurement to date.
- Modelling (PS tune) and recoil dominate uncertainties.

m_w uncertainties

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

Systematic uncertainties

arXiv:2403	.1508
------------	-------

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_T^ℓ	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
mT	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

- At HL-LHC: increased lepton acceptance.
- But need a dataset with low instantaneous luminosity.
- Final precision will depend on PDFs and amount of data.

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

The weak mixing angle at the LHC

- Measured via Z/ $\gamma^* \rightarrow ee, \mu\mu$ asymmetry in lepton decay angle θ_{CS} .
- Fit of data using templates from POWHEG MiNNLO.
- Addition of forward electrons.
- Use 9 $|y_{\ell\ell}|$ times 11 m_{$\ell\ell$} bins.
- 3 measurements: fits to measured $A_{FB}(y, m)$, unfolded $A_4(Y, M) = 8/3 A_{FB}(Y, M)$, observed $\cos\theta_{CS}$.

Channel	1	1	min $p_{\rm T}^{\rm lead}$ (GeV)	min $p_{\rm T}^{\rm trail}$ (GeV)	
μμ	0.00-	-2.40	20	10	
ee	0.00-2.50		25	15	
	$ \eta_{\rm e} $	$ \eta_{g,h} $	min $p_{\rm T}^{\rm e}$ (GeV)	min $p_{\rm T}^{{\rm g},{\rm h}}$ (GeV)	
eg	0.00-2.50	2.50-2.87	30	20	
eh	1.57 - 2.50	3.14-4.36	30	20	

0

Best measurement at hadron collider to date

 $sin^2 \theta_{eff}^{\ell} = 0.23157 \pm 0.00010 (stat) \pm 0.00015 (exp) \pm 0.00009 (theo) \pm 0.00027 (PDF)$

- Uncertainties dominated by PDF.
- Exp. systematics: MC stat (0.00008), lepton efficiency (0.00006), calibrations (0.00006), bkg (0.00004), others (0.00003).

SM parameters

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

The weak mixing angle at HL-LHC

CMS: $\mu\mu$ only extended to |y| < 2.8

ATL-PHYS-PUB-2022-018/FTR-22-001

> New CMS measurement already better than expectations in YR2018.

[We are never better beaten than by oneself]

A.-M. Magnan

EW @ LHC and HL-LHC

10/07/2024, LCWS 2024 1

14/48

SM parameters

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

Exclusive production (p) $\gamma\gamma$ (p) $\rightarrow \tau\tau$ with CMS

- Pure QED process.
- In SM, anomalous magnetic moment $a_{\tau} = 117721.10^{-8}$, electric dipole moment $d_{\tau} = -7.3.10^{-38}$ ecm.
- Combine $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$.
- Backgrounds reduced by requiring no track around di-tau vertex and low acoplanarity
 A= 1 − |Δφ(ℓ, ℓ')|/π.
- Corrections for track multiplicity from µµ CRs.

arXiv:2406.03975

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

ATLAS

Conclusion

Lumi

Extraction of the anomalous coupling $g_{\tau} - 2$

arXiv:2406.03975

- First-time observation in p-p collisions !
- Best-fit $\mu = 0.75^{+0.17}_{-0.14}$ (syst) ± 0.11 (stat).
- Observed significance: 5.3 (expected 6.5) s.d.
- Fiducial cross section (Ntracks=0): $\sigma_{\text{fid}}^{\text{obs}} = 12.4^{+3.8}_{-3.1}$ fb.
- Prediction from GAMMA-UPC elastic production, corrected for dissociative prod using data-CR: $\sigma_{fid}^{pred} = 16.5 \pm 1.5$ fb.

Outline

SM parameter

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

VBS&Triboson ATGC/AQGC Conclusion

EW @ LHC and HL-LHC

۵

SM paramete

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

Triple Gauge Couplings in the SM

- Only charged TGC allowed in SM: WWγ and WWZ.
- Fully determined by the structure of the EW sector of SM.
- Subtle cancellations involved ⇒ extremely sensitive to new physics through anomalous couplings.
- Experimentally, %-level precision for VV with clean multi-lepton FS.
- Diboson production: state of the art MC predictions at NNLO in pQCD, with NLO EW corrections (MATRIX).

 First evidence from LEP data in WW production, confirmation of non-Abelian nature of EW sector of SM.

Physics Reports 532 (2013) 119

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

EW production of single bosons

- Good Data/Theory consistency
- Already systematics limited.
- Measured to about 10% precision.
- MC predictions still at LO.

SM parameters

VBF&Dibosons

VBS&Tribosons

Conclusion

Diboson production

- All 13 TeV measurements: syst. dominated.
- Theory uncertainties ≃ exp. uncertainties for WW,WZ and ZZ.
- Theory > exp. for $W\gamma$.

arXiv:2405.18661

ATL-PHYS-PUB-2023-039

SM parameter

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

ATLAS/CMS comparison

arXiv:2405.18661

- Globally good agreement with MC predictions ⇒ NNLO (QCD) + NLO (EW) predictions necessary to match experimental precision!
- Already many new results out with full Run-2 dataset for both experiments.

Differential cross sections at $\sqrt{s} = 13$ TeV

- Test of higher order corrections. For e.g. diboson invariant mass, large enhancement in XS from NNLO QCD correction, but reduction expected from NLO EW corrections.
- Higher-order QCD corrections needed to model jet multiplicity in ZZ events (CMS)
- Limitation of multiplicative EW correction, mixing mixed EW/QCD contributions, visible at high lepton pT in WW events (ATLAS).
- PDF choice important for the overall XS !

VBS&Tribosons

Introduction

SM parameters

VBF&Dibosons

Conclusion

- ATLAS with 140 fb⁻¹ 13 TeV data.
- $4\ell(\ell = e,\mu)$ from 2 on-shell Z: $m_{4\ell} > 180$ GeV, $|m_{\ell\ell} - m_Z| < 10$ GeV.
- BDT to enhance LL, using angular variables.
- Challenge! get higher-order QCD and EW corrections for polarisation templates.

ATLA

Conclusion

SM parameters

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

Result for $Z_L Z_L$ production

JHEP 12 (2023) 107

- Profile likelihood fit to BDT discriminant.
- Extract signal strength and cross section: significance 4.3σ (exp 3.8σ).
- Prediction: NLO QCD \times NLO EW $q\bar{q}$ \rightarrow ZZ + LO gg \rightarrow ZZ [MoCaNLO] + LO EW qq \rightarrow ZZ+2j.

$$\begin{split} \mu_{LL} &= 1.15 \pm 0.27(\textit{stat}) \pm 0.11(\textit{syst}) = 1.15 \pm 0.29 \\ \mu_{LL}(\textit{exp}) &= 1.00 \pm 0.27 \\ \sigma_{Z_L Z_L}^{obs} &= 2.45 \pm 0.56(\textit{stat}) \pm 0.21(\textit{syst}) \textit{ fb} = 2.45 \pm 0.60 \textit{ fb} \\ \sigma_{Z_L Z_L}^{pred} &= 2.10 \pm 0.09 \textit{ fb} \end{split}$$

- Limited by data statistics.
- Leading systematics: theoretical modelling of the polarisation templates.
- Leading theoretical uncertainties on prediction: QCD scales and PDF.

VBS&Tribosons

GC/AQGC

Conclusion

JHEP 12 (2023) 107

Existing constraints on anomalous neutral TGC

CP-sensitive observables in ZZ production

- normally use high-pT observables ⇒ very strong constraints but insensitive to CP properties.
- Construct CP-sensitive observable $T_{yz,1(3)} = sin\phi_{1(3)} \times cos\theta_{1(3)}$.
- Symmetric for SM, asymmetric for CP-odd ANTGC.
- Construct 1-D map out of 2-D distribution.

VBS&Tribosons

GC/AQGC

ATLAS

Conclusion

Polarisation fractions in WZ production

JHEP 07 (2022) 032

- 3-lepton decays, m_{WZ} > 100 GeV.
- Likelihood fit to $\cos(\theta_W)$ and $\cos(\theta_Z)$.
- Polarisation templates from MC: longitudinal "0", transverse "L"/"R".
- 3 params: total norm, f_0 and $f_{LR} = f_L f_R$.
- \Rightarrow Decorrelation between L and T components for both W and Z.
- Also first observation of W_L in WZ: significance 5.6 σ (exp. 4.3 σ). Significance for $Z_L >> 5\sigma$

SM paramete

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

Radiation Amplitude Zero in WZ production

ATLAS full Run-2 data, 3-lepton decays

- AT LO: expect exact 0 yield for TT events with ΔY(WZ) ~ 0.
- Effect enhanced for low jet activity ⇒ select events at low p^{WZ}_T
- Bkg (~ 10%) and 00+0T+T0 (~ 27%) subtracted + unfolding.
- Good agreement with simulation!

S. Frixione et al. / WZ production at hadron colliders

arXiv:2402.16365

A.-M. Magnan

VBS&Tribosons

GC/AQGC

ATLAS

Conclusion

Longitudinal polarisation in WZ production

arXiv:2402.16365

- Enhance 00 contribution with high p^Z_T selection.
- BDT to separate 00 from TT+0T+T0.
- Likelihood fit of BDT discriminant ⇒ extract f₀₀, f_{0T+T0}, total norm.
- Pol. templates + predicted fractions: MADGRAPH_aMC@NLO WZ+0j,WZ+1j at LO + higher-order QCD corrections (from data) + NLO EW corrections.

BDT score

	Measu	rement		Predictio	on
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \; {\rm GeV}$
<i>f</i> 00	$0.19 \pm _{0.03}^{0.03} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$0.13 \pm _{0.08}^{0.09} (stat) \pm _{0.02}^{0.02} (syst)$	f00	0.152 ± 0.006	0.234 ± 0.007
f_{0T+T0}	$0.18 \pm_{0.08}^{0.07} (\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$	f_{0T}	0.120 ± 0.002	0.062 ± 0.002
ftt	$0.63 \pm_{0.05}^{0.05} (stat) \pm_{0.04}^{0.04} (syst)$	$0.64 \pm _{0.12}^{0.12} (stat) \pm _{0.06}^{0.06} (syst)$	f_{T0}	0.109 ± 0.001	0.058 ± 0.001
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ	f_{TT}	0.619 ± 0.007	0.646 ± 0.008

EW @ LHC and HL-LHC

10/07/2024, LCWS 2024

SM paramete

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

_

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

ATLAS

Conclusion

Quartic Gauge Couplings

- Allowed in SM: WWWW, WWZZ, WWZγ, WWγγ.
- VBS/Tribosons: rare processes, again crucial to test EWSB.
- VV to VV scattering: separating longitudinal polarisation of V and measure vs m_{VV} ⇒ unique measurement of HVV coupling.

Introduction SM parameters VBF&Dibosons VBS&Tribosons Conclusion Characteristics of the VBS production V_1 Final state with 2 jets: Background from Background from specific topology with non-VBS but $O(\alpha^6)$ part $O(\alpha^4 \alpha_s^2)$ and large m_{ii} (\geq 500 GeV) interference $O(\alpha^5 \alpha_s)$. of the signal. and large $\Delta \eta_{ii} (\geq 2)$. Mixing between QCD and EW corrections NLO EW for strong production NLO QCD for interference 10NLO EW for interference ⇔ NLO QCD for EW $a^5 a_s$ $\alpha^4 \alpha_s^2$ α^6 production Complication for MC event generators ! NLO

 VBS approximation: unique assignement as "EW" or "QCD" corrections.

 $\alpha^4 \alpha_s^3 \alpha^5 \alpha_s^2$

 $\alpha^6 \alpha_s$

 α^{γ}

SM parameter

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

Hilumi

Overview of LHC results

VBF, VBS, and Triboson Cross Section Measurements Status: October 2023

Introduction Golden channel: W[±]W[±]+2j

VBF&Dibosons

VBS&Tribosons

Conclusion

ATLAS 139 fb⁻¹ JHEP 04 (2024) 026

- Best EW/strong production ratio, $\simeq 5$ in fiducial area.
- ۰ Main background: WZ+2j \Rightarrow can measure both processes together, CMS strategy in [PLB 809 (2020) 135710]
- Extract inclusive and differential XS.

Source	Impact [%]
Experimental	4.6
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.9
E_T^{miss} scale and resolution	0.2
b-tagging inefficiency	0.7
Background, misid. leptons	3.4
Background, charge misrec.	1.0
Pile-up modelling	0.1
Luminosity	1.9
Modelling	4.5
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.7
EW $W^{\pm}W^{\pm}jj$, QCD corrections	1.9
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.9
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.6
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.6
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.8
Background, WZ scale, PDF & α_s	0.3
Background, WZ reweighting	1.5
Background, other	1.3
Model statistical	1.8
Experimental and modelling	6.4
Data statistical	7.4
Total	9.8

EW @ LHC and HL-LHC

VBS&Tribosons

Conclusion

Differential cross sections for $W^{\pm}W^{\pm}+2j$

Variable	EW W χ^2/N_{dof}	[±] W [±] jj p-value	Inclusive χ^2/N_{dof}	W [±] W [±] jj p-value	Max. value in data
m _{ℓℓ}	4.5/6	0.605	7.34/6	0.291	1081 GeV
$m_{\rm T}$	13.0/6	0.043	16.33/6	0.012	1270 GeV
mjj	7.6/6	0.266	8.67/6	0.193	6328 GeV
Ngap jets	2.5/2	0.282	2.53/2	0.282	5
ξ_{j_3}	4.2/5	0.517	4.93/5	0.424	1.74

Statistically limited.

Corresponding CMS results: 137 fb⁻¹: PLB 809 (2020) 135710

A.-M. Magnan

Introduction

SM parameter

VBF&Dibosons

VBS&Tribosons

C/AQGC

CMS: FTR-21-001

Conclusion

Prospects for $W^{\pm}W^{\pm}$ at HL-LHC

- Flagship channel for HL-LHC physics program.
- Using 3000 fb⁻¹, 3 leptons (e,µ) + 2j m_{jj} > 500 GeV
- ATLAS: extended lepton acceptance to $|\eta| < 4$. CMS: same as Run 2.

	Run	-2	HL	-LHC		
ATLAS	10% (sta	at 8%)	6% (stat 2%)			
CMS	11% (sta	at 9%)	3% (s	stat 2%)		
Source			Uncerta Baseline	inty (%) Optimistic		
$W^{\pm}W^{\pm}jj$ (EW	7)		:	3		
Luminosity				1		
Trigger efficience	2y		0	.5		
Lepton reconstr	ruction and iden	ntification	1	.8		
Jets			2	.3		
Flavour tagging	5	I	1	.8		
Jets faking elec	trons		2	:0		
Charge mis-ID			25			
$W^{\pm}W^{\pm}jj$ (QC)	D)		20	5		
Top			15	10		
Diboson			10	5		
Triboson			15	10		
Source of uncert	tainty	EW W±W±	EW WZ	QCD WZ		
Integrated lumi	nosity	1.1	1.0	1.0		
Lepton measure	ement	1.1	1.5	1.5		
Jet energy scale	and resolution	0.3	2.0	0.4		
Pileup		0.1	0.5	0.3		
b tagging		1.2	1.2	1.2		
Limited sample	size	0.8	1.0	0.5		
Nonprompt lep	ton rate	1.2	1.7	1.3		
Theory		1.7	2.6	1.4		
Total systematic	uncertainty	3.0	4.4	3.0		
Statistical uncer	tainty	1.8	6.1	2.8		
Total uncertaint	у	3.5	7.6	4.2		

.

CMS selection using BDTs (Run 2 strategy).

- Expected significance @ 3 ab⁻¹: 4σ.
- Expected precision: 30%.

SM parameters

VBF&Dibosons

VBS&Tribosons

GC/AQGC

Conclusion

EW production of ZZ(4*l*)+2j

ATLAS: JHEP 01 (2024) 004

- 140 fb⁻¹, 4 ℓ (e, μ) + 2j with m_{jj} > 300 GeV, Δy_{jj} > 2.0.
- First observation in N.P. 19 (2023) 237 (ATLAS, 5.7σ, 26% precision) and evidence in PLB 812 (2020) 135992 (CMS, 4σ, 36% precision)
- New! Differential xs with 3 types of observables: VBS, polarisation+CP prop., QCD-sensitive.
- Cut on centrality $\zeta = |\frac{[y_{4\ell} 0.5(y_{j1} + y_{j2})]}{\Delta y_{jj}}| < 0.4$ (> 0.4) to enhance (suppress) EW contribution.
- Better agreement for SHERPA (larger theory unc.) over MG5_NLO+Py8.
- At HL-LHC, expect 10% precision on cross section with 3 ab⁻¹.

Relative uncertainty on fid. xs

Introduction

SM paramete

Overview of LHC tribosons results

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

A.-M. Magnan

First observation of WW γ in p-p collisions

PRL 132 (2024) 121901

- 138 fb⁻¹, $e\mu\gamma$ +MET, likelihood fit in 2D m^{WW}_T and m_{$\ell\ell\gamma$}.
- Signal modelled at NLO QCD with MADGRAPH aMC@NLO. ۰
- Enhance sensitivity with 2 categories: 0 and > 1 jet.
- Observed (expected) significance of 5.6 (4.7) σ .

 $\sigma_{obs} = 5.9 \pm 0.8 (\text{stat}) \pm 0.8 (\text{syst}) \pm 0.7 (\text{modeling}) \text{ fb}$

$\sigma_{theo} = 5.33 \pm 0.34$ (scale) ± 0.05 (PDF) fb

Introduction

Outline

SM parameters

VBF&Dibosons

VBS&Tribosons

ATGC/AQGC ●○○

S

Conclusion

 ΛE J. Rojo, LHCP2024

 $E_{\rm LHC}$

SM parameters

VBF&Dibosons

VBS&Tribosons

Conclusion

LHC results and global fit

- Many new results from ATLAS and CMS with limits on anomalous SMEFT dim-6 and dim-8 operators with full run-2 dataset ⇒ See backup slides for a selection.
- Many differential cross sections available to improve sensitivity.
- One observable ⇒ several contributing operators
- One operator \Rightarrow affects several observables.
- Ultimately ⇒ global analysis, efforts already ongoing.

SM parameter

VBF&Dibosons

VBS&Tribosons

ATGC/AQGC

ATLAS

Conclusion

First global fit by ATLAS

- Includes also LEP EW Precision Observables.
- New VBS results with full run-2 to be added / similar effort from CMS ongoing !

-5 0 5 10 15 0 0.2 0.4 0.6 0.8 Parameter value contribution Introduction

SM parameters

VBF&Dibosons

VBS&Tribosons

C/AQGC

Conclusion

Conclusion

- Reaching precision era for SM parameters, even at hadron collider !
- Precision measurements are already limited by PDF uncertainties.
- %-level predictions on VV production and high statistics: can measure differentially.
- VBS processes now measured at both ATLAS and CMS with O(10%) precision for golden same-sign WW production and exclusive production, 20% for others.
- Many new results with first polarisation measurements in inclusive ZZ, WZ and W^{\pm}W^{\pm}+2j productions.
- First differential distributions for VBS processes!
- Many new constraints on EFT parameters ⇒ experimental/theory collaboration for global fits.
- HL-LHC expected to reach 3-10%-level precision on golden VBS channels.
- Adding a "boost" factor, W[±]_L W[±]_L should be observed at HL-LHC.
- More work needed on reducing theory modelling uncertainties, and analysing ALL LHC data available !

QUAND ON NE SAIT PAS OÙ L'ON VA, IL FAUT Y ALLER ET LE PLUS VITE POSSIBLE.

Introduction

SM paramete

VBF&Dibosons

VBS&Tribosons

Conclusion

Thank you for your attention

Backups •	Single bosons	Dibosons 00000000000	VBS/Triboso
Backups			

ATGC/AQGC

BACKUPS

EW @ LHC and HL-LHC

Single bosons

Dibosons 00000000000

Systematic uncertainties in W and Z measuremen Marks

VBS/Tribosons

ATGC/AQGC

PLB 854 (2024) 13872, $\sqrt{s} = 13.6 \text{ TeV}, \mathcal{L} = 29 \text{ fb}^{-1}.$

Category									
	$\sigma(Z \rightarrow ee)$	$\sigma(Z \rightarrow \mu\mu)$	$\sigma(Z \rightarrow \ell \ell)$	$\sigma(W^- \rightarrow e^-)$	\bar{v}) $\sigma(W$	$V^+ \rightarrow e^+ v$)	$\sigma(W^-$	$\rightarrow \mu^- \bar{\nu}$)	$\sigma(W^+ \rightarrow \mu^+ \nu$
Luminosity	2.2	2.2	2.2	2.5		2.5	2.	5	2.4
Pile-up	1.2	0.3	0.8	1.1		1.1	0.	3	0.4
MC statistics	< 0.2	< 0.2	< 0.2	< 0.2		0.4	< ().2	0.4
Lepton trigger	0.2	0.4	0.2	1.2		1.3	1.	0	1.0
Electron reconstruction	1.4	-	0.9	0.7		0.8		-	-
Muon reconstruction	-	2.1	1.4	-		-	1.	0	1.0
Multi-jet	-	-	-	2.9		2.4	1.	3	1.1
Other background modelling	< 0.2	< 0.2	< 0.2	< 0.2		< 0.2	0.	5	0.4
Jet energy scale	-	-	-	1.4		1.4	1.	3	1.4
Jet energy resolution	-	-	-	< 0.2		0.3	0.	2	0.2
NNJVT	-	-	-	1.6		1.5	1.	3	1.3
E _T ^{miss} track soft term	-	-	-	< 0.2		0.4	< ().2	< 0.2
PDF	0.2	0.2	< 0.2	0.8		0.8	0.	6	0.5
QCD scale (ME and PS)	0.6	< 0.2	0.3	1.3		1.2	0.	6	0.6
Flavour tagging	-	-	-	-		-		-	-
tī modelling	-	-	-	-		-		-	-
Total systematic impact [%]	3.0	3.1	2.7	5.0		4.5	3.	8	3.6
Statistical impact [%]	0.04	0.03	0.02	0.02		0.01	0.0	01	0.01
Cat	egory	$\sigma(W^- \rightarrow \ell$	$\bar{v} = \sigma(W^{+} - \sigma(W^{+}$	$\rightarrow \ell^+ \nu) = \sigma(W)$	$ \rightarrow \ell v)$	R_{W^*/W^-}	$R_{W^*/Z}$	$R_{t\bar{t}/W^*}$	-
Lun	inosity	2.5	2.	4	1.4	0.0			
				•	2.4	< 0.2	0.3	< 0.2	
Pi	le-up	0.5	0.1	7).6	< 0.2 < 0.2	0.3 < 0.2	< 0.2 < 0.2	
Pi MC s	le-up tatistics	0.5 < 0.2	0.1	7 2 <	0.2	< 0.2 < 0.2 < 0.2	0.3 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	
Pi MC s Lepto	le-up tatistics n trigger	0.5 < 0.2 1.0	0.1	7 2 2	0.2 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.3 < 0.2 < 0.2 0.7	< 0.2 < 0.2 < 0.2 0.8	
Pi MC s Lepto Electron ro	le-up tatistics n trigger econstruction	0.5 < 0.2 1.0 0.4	0.1	7 < 2 < 9 1	0.2 0.2 0.4	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.3 < 0.2 < 0.2 0.7 0.5	< 0.2 < 0.2 < 0.2 0.8 0.4	
Pi MC s Lepto Electron re Muon rec	le-up statistics n trigger econstruction construction	0.5 < 0.2 1.0 0.4 0.6	0.1	7 1 2 < 9 1 5 1).6 0.2).9).4).6	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	0.3 < 0.2 < 0.2 0.7 0.5 0.8	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6	
Pi MC s Lepto Electron ro Muon ree Muon ree Muon ree	le-up statistics n trigger econstruction construction dti-jet	0.5 < 0.2 1.0 0.4 0.6 1.2	0.1 0.1 0.1 0.1 1.1	* 7 2 < 9 1 5 1 6 1	0.2 0.2 0.9 0.4 0.6 1.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0	
Pi MC s Lepto Electron n Muon ree Mu Other backgr	le-up statistics n trigger econstruction construction dti-jet ound modelling	0.5 < 0.2 1.0 0.4 0.6 1.2 0.4	0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	* 7 1 2 < 9 1 5 1 6 1 2	0.2 0.2 0.9 0.4 0.6 1.2 0.4	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9	
Pi MC s Lepto Electron ri Muon re Mu Other backgr Jet ene	le-up statistics n trigger construction construction dti-jet ound modelling rgy scale	0.5 < 0.2 1.0 0.4 0.6 1.2 0.4 1.3	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	* · · · · · · · · · · · · · · · · · · ·	0.2 0.2 0.9 0.4 0.6 1.2 0.4 1.3	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2 < 0.2 < 0.2	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3	
Pi MC Lepto Electron r Muon re Mt Other backgr Jet enc Jet encr	le-up statistics n trigger construction construction dti-jet ound modelling rrgy scale y resolution	0.5 < 0.2 1.0 0.4 0.6 1.2 0.4 1.3 < 0.2	0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	* 7 1 7 2 < 9 1 5	0.2 0.2 0.4 0.6 1.2 0.4 1.3 0.2	< 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2	
Pi MC : Lepto Electron m Muon ree Mt Other backgr Jet encg Jet encg N	le-up statistics n trigger construction construction dti-jet ound modelling rrgy scale y resolution NJVT	0.5 < 0.2 1.0 0.4 0.6 1.2 0.4 1.3 < 0.2 1.4	02 02 03 04 04 04 04 04 04 04 04 04 04 04 04 04	* · · · · · · · · · · · · · · · · · · ·	2.4 0.2 0.9 0.4 0.6 1.2 0.4 1.3 0.2 1.3	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2 < 0	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2	
Pi MC: Lepto Electron n Muon rea Mu Other backgr Jet energ N Jet energ C T tri tra F	le-up tatistics n trigger econstruction ounstruction diti-jet ound modelling rrgy scale y resolution VJVT ck soft term	0.5 < 0.2 1.0 0.4 0.6 1.2 0.4 1.3 < 0.2 1.4 < 0.2	023 023 024 024 024 024 024 024 025 025 025 025 025 025 025 025 025 025	* · · · · · · · · · · · · · · · · · · ·	2.4 0.2 0.9 0.4 0.6 1.2 0.4 1.3 0.2 1.3 0.3	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 1.6 < 0.2 < 0	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 0.3	
Pi MC:S Lepto Electron n Muon rea Mi Other backgr J et ener J et energ N N E ^{min} s tra F	le-up tatistics n trigger econstruction construction ilti-jet ound modelling rgy scale y resolution 4UVT ck soft term 2DF	$\begin{array}{c} 0.5 \\ < 0.2 \\ 1.0 \\ 0.4 \\ 1.2 \\ 0.4 \\ 1.3 \\ < 0.2 \\ 1.4 \\ < 0.2 \\ 0.5 \end{array}$	0: 0: 0: 0: 0: 0: 1: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	* · · · · · · · · · · · · · · · · · · ·	2.4 0.6 0.2).9).4 1.2).4 1.3 0.2 1.3).3).3	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2 < 0.5	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3 0.2	< 0.2 < 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 0.3 0.4	
Pi MC 5 Lepto Electron n Muon rec Mr Other backgr J et ener J et ener N Ser wir ar F T G CD scale	le-up tatistics n trigger construction sonstruction diti-jet ound modelling rgy scale y resolution UVT ck soft term DF (ME and PS)	$\begin{array}{c} 0.5 \\ < 0.2 \\ 1.0 \\ 0.4 \\ 0.6 \\ 1.2 \\ 0.4 \\ 1.3 \\ < 0.2 \\ 1.4 \\ < 0.2 \\ 0.5 \\ 0.8 \end{array}$	0: 0: 0: 0: 0: 0: 0: 0: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	7	2.4 0.6 0.2).9).4 1.2).4 1.3 0.2 1.3).3).3).6	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2 < 0.	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3 0.2 0.7	< 0.2 < 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 0.3 0.4 0.7	
Pi MC : Electron r Muon ree Mu Other backgr Jet energ NT Emissi stra CCD scale Flavou	le-up tatistics n trigger construction onstruction dti-jet ound modelling rgy scale y resolution UVT ck soft term 'DF ((ME and PS)) r tagging	0.5 < 0.2 1.0 0.4 0.6 1.2 0.4 1.3 < 0.2 1.4 < 0.2 0.5 0.8 -	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2 < 2 < 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	2.4 0.2 0.2 0.9 0.4 1.2 1.3 0.2 1.3 0.3 0.6 -	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 1.6 < 0.2 < 0.5 < 0.	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3 0.2 0.7 -	< 0.2 < 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2	
Pi MC : Lepto Electron r Muon rec Mr Other backgr Jet en Jet en Fars Fars F QCD scale Flavou f fin	le-up tatistics n trigger construction ilti-jet ound modelling rgy scale y resolution UVT ck soft term PDF (ME and PS) r tagging sdelling	0.5 < 0.2 1.0 0.4 0.6 1.2 t.0.4 1.3 < 0.2 1.4 < 0.2 0.5 0.8 0.8 - -	0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	7	2.4 0.2 0.2 0.9 0.4 0.6 1.2 0.4 1.3 0.2 1.3 0.3 0.6 - -	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2 0.2 < 0.2 < 0.2	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3 0.2 0.7 - -	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2 1.1	
Pi MC : Lepton Electron r Monre re M M Other backg J et ene S N C Electron N C Electron N C C S S C N C S S S S S S S S S S S S	le-up tatistics a ntrigger zeonstruction ounstruction lift-jet ound modelling rgy scale y resolution UVT ek soft term DF (ME and PS) r tagging atic impact [%]	$\begin{array}{c} 0.5 \\ < 0.2 \\ 1.0 \\ 0.4 \\ 0.6 \\ 1.2 \\ 0.4 \\ 1.3 \\ < 0.2 \\ 1.4 \\ < 0.2 \\ 0.5 \\ 0.8 \\ - \\ - \\ 3.7 \end{array}$	01 01 01 01 01 01 01 01 01 01 01 01 01 0	7	2.4 0.6 0.2 0.9 0.4 1.2 0.4 1.3 0.2 1.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	< 0.2 < 0.2	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3 0.2 0.7 - - 2.4	< 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2 1.1 2.5	-
Pi MC : Lectron n Moan re Other backgr Other backgr I et energ MC Social Finoto Todal system <u>1</u> fodal system <u>1</u> fodal system <u>1</u> fodal system	le-up tatistics n trigger econstruction onstruction dti-jet ound modelling rgy scale y resolution UVT ck soft term 'DF (ME and PS) r tagging delling atic impact [%]	$\begin{array}{c} 0.5 \\ < 0.2 \\ 1.0 \\ 0.4 \\ 0.6 \\ 1.2 \\ 0.4 \\ 1.3 \\ < 0.2 \\ 1.4 \\ < 0.2 \\ 0.5 \\ 0.8 \\ - \\ - \\ 3.7 \\ 0.01 \end{array}$	0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	7 - 22 <	2.4 0.6 0.2 0.9 0.4 1.2 0.4 1.3 0.2 1.3 0.3 0.3 0.3 0.3 0.6 - - - - - 0.1	<pre>< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 1.6 < 0.2 < 0</pre>	0.3 < 0.2 < 0.2 0.7 0.5 0.8 1.1 0.3 1.3 < 0.2 1.3 0.3 0.2 0.7 - - 2.4 0.02	< 0.2 < 0.2 < 0.2 < 0.2 0.8 0.4 0.6 1.0 0.9 1.3 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2 < 0.2 0.3 0.4 0.7 < 0.2 < 0.2 < 0.2 0.3 0.4 0.5 0.2 < 0.2 0.3 0.4 0.5 0.2 < 0.2 0.3 0.4 0.5 0.2 < 0.2 0.3 0.4 0.5 < 0.2 < 0.2 0.3 0.4 0.5 < 0.2 < 0.2 0.3 0.4 0.5 < 0.2 < 0.2 0.3 0.4 0.5 < 0.2 0.3 0.4 0.5 < 0.2 0.3 0.4 0.5 < 0.2 0.3 0.3 0.3 0.32 0.32	-

CMS-PAS-SMP-22-017, $\sqrt{s} = 13.6$ TeV. $\mathcal{L} = 5.04$ fb⁻¹.

Source	Uncertainty (%)
Muon efficiencies	0.83
PDF, QCD scale and parton shower	0.53
Finite size of MC samples (bin-by-bin)	0.35
tt background	0.16
EWK background	0.12
Pileup	0.08
Muon momentum correction	0.08
Combined syst. uncertainty	0.92
Luminosity	2.3
Stat. uncertainty	0.06

Backups o	Single bosons o●oooooo	Dibosons 0000000000	VBS/Tribosons	ATGC/AQGC
W and Z a	t √ <i>s</i> = 13.6 Te	W with ATLAS	RAT	
10 ¹⁰ ATLAS 10 ¹⁰ S = 13 10 ¹⁰ Post-fit 10 ¹⁰ S = 10 ¹⁰ 10 ¹⁰ S = 10 ¹⁰	5.6 TeV, 29 fb ⁻¹ → Data → Data → W→ //→ → Sin → Z→ II → V/→ → Unt → Unt	gle-top pretainty muni- certainty muni- pretainty muni- mun	PLB 85	4 (2024) 13872
1.005 - - - - - - - - - - - - - - - - - -	ν μ ν μ [,] ν ee μμ eμ 1	0.9E	ATLAS fi = 13.6 TeV, 29 fb ⁺	ATLAS ff = 13.6 TeV, 29 fb ⁻¹
Electron selections Muon selections	$p_T > 27 \text{ GeV}$ $ \eta < 2.47 \text{ and veto of } 1.37 < \eta $ $p_T > 27 \text{ GeV}$ $ \eta < 2.5$	< 1.52 ↔	CT18 CT18A MSH720 NNPDF4.0 PDF4LHC21 RTATASR021	
W-boson selections Z-boson selections	Exactly one lepton $E_{T}^{miss} > 25 \text{ GeV}$ $m_{T} > 50 \text{ GeV}$ Exactly two same flavour opposite cha	arged leptons	ABMP16 1.35 1.4 1.45 1.5 9.5 10 R _{W/W} = α_W^{id} / α_W^{id}	$\begin{array}{c} & & & & & \\ & & & & & \\ \hline & & & & & \\ 10.5 & 11 & 11.5 & 12 & 12.5 & 13 \\ & & & & & \\ R_{W/2} = \sigma_{W}^{dd} \ / \ \sigma_{Z}^{dd} \end{array}$

A.-M. Magnan

EW @ LHC and HL-LHC

10/07/2024, LCWS 2024 51 / 48

VBS/Tribosons

$\gamma\gamma ightarrow au au$ systematic uncertainties and fiducial cuts $rac{2}{3}$ ATLAS

	eμ	$e\tau_h$	$\mu \tau_{\rm h}$	$\tau_{\rm h} \tau_{\rm h}$
$p_{\rm T}^{\rm e}$ (GeV)	> 15/24	> 25	-	_
$ \eta^{e} $	< 2.5	< 2.5	_	_
$p_{\rm T}^{\mu}$ (GeV)	> 24/15	_	> 21	_
$ \eta^{\mu} $	< 2.4	_	< 2.4	_
$p_{\rm T}^{\tau_{\rm h}}$ (GeV)	_	> 30	> 30	> 40
$ \eta^{\tau_h} $	_	< 2.3	< 2.3	< 2.3
$\Delta R(\ell, \ell')$	> 0.5	> 0.5	> 0.5	> 0.5
$m_{\rm T}({\rm e}/\mu, \vec{p}_{\rm T}^{\rm miss})$ [GeV]	_	< 75	< 75	_
Α	< 0.015	< 0.015	< 0.015	< 0.015
$m_{\rm vis}$ (GeV)	< 500	< 500	< 500	< 500
Ntracks	0	0	0	0

Uncertainty	Process	Magnitude
Luminosity	All simulations	1.6%
DY cross section	DY	2%
Inclusive diboson cross section	WW, WZ, ZZ	5%
e ID, iso, trigger	All simulations	up to 2%
e ID low-Ntracks correction	All simulations	1%
μ ID, iso, trigger	All simulations	<2%
τ _h ID	All simulations	1-5%
τ _h trigger	All simulations	up to 5%
$e \rightarrow \tau_h \text{ mis-ID}$	$Z/\gamma * \rightarrow ee$ and $\gamma \gamma \rightarrow ee$	<10%
$\mu \rightarrow \tau_h \text{ID}$	$Z/\gamma * \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow \mu\mu$	<10%
τ_h energy scale	All simulations	<1.2%
$e \rightarrow \tau_h$ energy scale	$Z/\gamma * \rightarrow ee$ and $\gamma \gamma \rightarrow ee$	<5%
$\mu \rightarrow \tau_h$ energy scale	$Z/\gamma * \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow \mu\mu$	<1%
τ_h ID low-N _{tracks} correction	All simulations	2.1%
e ID low-N _{tracks} correction	All simulations	2.0%
$e \rightarrow \tau_h \text{ ID low-}N_{\text{tracks}}$ correction	$Z/\gamma * \rightarrow ee$ and $\gamma \gamma \rightarrow ee$	22%
$\mu \rightarrow \tau_h \text{ ID low-}N_{\text{tracks}} \text{ correction}$	$Z/\gamma * \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow \mu\mu$	15%
N ^{PU} _{tracks} reweighting	All simulations	2%
N ^{HS} _{tracks} reweighting	DY and inclusive VV	1.5-6.5%
Acoplanarity correction	DY	5%
DY extrapolation from $N_{\text{tracks}} < 10$	DY simulation	1.4-2.0%
μ_R, μ_f	DY simulation	Shape
PDF	DY simulation	Shape
jet $\rightarrow \tau_h$ MF, extrapolation with $p_T^{\tau_h}$	jet $\rightarrow \tau_h$ mis-ID bkg.	<50%
jet $\rightarrow \tau_h$ MF, N _{tracks} extrapolation (stat.)	jet $\rightarrow \tau_h$ mis-ID bkg.	6-18%
jet $\rightarrow \tau_h$ MF, inversion of CR selection	jet $\rightarrow \tau_h$ mis-ID bkg.	<10%
jet $\rightarrow \tau_h$ MF, x^{QCD} fraction	jet $\rightarrow \tau_h$ mis-ID bkg.	9%
jet $\rightarrow \tau_h$ MF, N _{tracks} extrapolation (syst.)	jet $\rightarrow \tau_h$ mis-ID bkg.	<10%
$jet \rightarrow e/\mu$ OS-to-SS (stat.)	$jet \rightarrow e/\mu$ mis-ID bkg.	<20%
$jet \rightarrow e/\mu$ OS-to-SS (syst.)	jet $\rightarrow e/\mu$ mis-ID bkg.	10%
$jet \rightarrow e/\mu$ OS-to-SS N_{tracks} extrapolation	$jet \rightarrow e/\mu$ mis-ID bkg.	8%
Elastic rescaling (stat.)	$\gamma \gamma \rightarrow \tau \tau / \mu \mu / ee, WW$	1.3-3.7%
Elastic rescaling (syst., shape)	$\gamma \gamma \rightarrow \tau \tau / \mu \mu / ee, WW$	Mass-dependent
Limited statistics	All processes	Bin-dependent
Pileup reweighting	All simulations	Event-dependent

52 / 48

2500

2000 p_{T,Z} [GeV]

EW @ LHC and HL-LHC

p_{T.Z} [GeV]

500

EW @ LHC and HL-LHC

Invisible	7 width		(Qa		HILUMI
Backups o	Single bosons ○○○○○●○○	Dibosons 00000000000	VBS/Tribosons	ATGC/AG	2GC

Invisible Z width

- Important test of the SM related to number of ν.
- Very precise prediction from SM, $\Gamma(Z \rightarrow inv) = 501.445 \pm 0.047 \text{ MeV}$ [PDG2022] \Rightarrow sensitivity to new physics.
- Using ratio of invisible to (ee,μμ) decays corrected to common phase-space: dominant syst. uncertainties cancel.
- Z+jets generated with SHERPA2.2.11 at NLO (up to 2 partons)+LO (up to 5 partons), and also MG5_aMC@NLO at NLO (up to 3 partons).
- Selection: $p_{T,Z} > 130 \text{ GeV}$ and ≥ 1 jet with $p_T > 110 \text{ GeV}$ and $|\eta| < 2.4$, $\Delta \phi(\text{jet}, p_{T,Z}) > 0.4$
- Binning in $p_{T,Z}$ (\Leftrightarrow recoil).

Backups o	Single bosons ○○○○○○●○	Dibosons 0000000000	VBS/Tribosons	ATGC/AQGC

Z invisible width: systematic uncertainties

ATLAS 37 fb⁻¹, PLB 854 (2024) 138705

Systematic Uncertainty	Impact on $\Gamma(Z \rightarrow inv)$	in [MeV]	in [%]
Muon efficiency		7.4	1.5
Renormalisation & factorisa	5.9	1.2	
Electron efficiency		4.9	1.0
Detector correction		4.4	0.9
QCD multijet		3.2	0.6
E _T miss		2.4	0.5
$Z(\rightarrow \mu\mu)$ +jets misid. leptor	n estimate	1.9	0.4
Jet energy resolution		1.6	0.3
$W(\rightarrow \ell \nu)$ +jets normalisatio	n	1.5	0.3
Pile-up reweighting		1.5	0.3
Non-collision background es	stimate	1.3	0.3
Jet energy scale		1.3	0.3
γ^* -correction		1.0	0.2
$Z(\rightarrow ee)$ +jets misid. lepton	estimate	1.0	0.2
Luminosity		1.0	0.2
Parton distribution functions	$\alpha + \alpha_s$	0.7	0.1
$\Gamma(Z \rightarrow \ell \ell)$		0.5	0.1
Tau energy scale		0.4	0.1
Muon momentum scale		0.3	0.1
$W(\rightarrow \ell \nu)$ +jets misid. leptor	i estimate	0.3	0.1
(Forward) jet vertex tagging		0.2	< 0.1
Top subtraction scheme		0.2	< 0.1
Electron energy scale		0.1	< 0.1
Systematic		12	2.4
Statistical		2	0.4
Total		13	2.5

CMS 36.3 fb⁻¹, Phys. Lett. B 842 (2023)

137563

Source of systematic uncertainty	Uncertainty (%)
Muon identification efficiency (syst.)	2.1
Jet energy scale	1.8-1.9
Electron identification efficiency (syst.)	1.6
Electron identification efficiency (stat.)	1.0
Pileup	0.9-1.0
Electron trigger efficiency	0.7
τ_h veto efficiency	0.6-0.7
$p_{\rm T}^{\rm miss}$ trigger efficiency (jets plus $p_{\rm T}^{\rm miss}$ region)	0.7
p_T^{miss} trigger efficiency $(Z/\gamma^* \rightarrow \mu\mu \text{ region})$	0.6
Boson p_T dependence of QCD corrections	0.5
Jet energy resolution	0.3-0.5
p_T^{miss} trigger efficiency (μ +jets region)	0.4
Muon identification efficiency (stat.)	0.3
Electron reconstruction efficiency (syst.)	0.3
Boson p_T dependence of EW corrections	0.3
PDFs	0.2
Renormalization/factorization scale	0.2
Electron reconstruction efficiency (stat.)	0.2
Overall	3.2

- QCD scale uncertainty much reduced by CMS global simultaneous fit strategy.
- CMS selects $p_{T,Z} > 200$ GeV.
- Overall lower exp. syst in ATLAS.

Tau polarisation in $Z \rightarrow \tau \tau$ decays

- CMS 35.9 fb⁻¹ 2016 dataset.
- Most precise measurement at hadron colliders !
- Precision comparable to SLD.

Single bosor

Dibosons •0000000000 VBS/Tribosons

ATGC/AQGC

JHEP 04 (2024) 026

MC for dibosons results

arXiv:2405.18661							
Process	\sqrt{s}	Theory	Other res	ults			
	(Te	v) calculation					
Wγ [285]	13	MG5_aMC 1p NLO	aTGC				
W [±] W [∓] [289]	13	MATRIX	aTGC, o:	wit	h jet v	eto	
WZ [290]	13	MATRIX	aTGC, bo	oson	polar	zatio	n, 9 dist.
ZZ [292]	13	MATRIX	aTGC, 6	dist			
EW W [±] W ⁺ ,WZ [32	13	MG5.aMC Py8 LO		aQo	3C		
$\gamma \gamma \rightarrow W^{\pm}W^{\pm}$ [330]	13	MADGRAPH 5 LO rescaled		aQQ	3C		
EW W 7 [311]	13	MG5.aMC Py8 LO		aQi	эC, т _і , 6-	fist.	
EW Z ₇ [312]	13	MG5.aMC Py8 LO		aQ	ЭС, т _і ,х∆	7(jj) + 3	1D dist.
EW W± W± [334]	13	MG5.aMC Py8 corr NLO QCD a	nd EW [335,336]	aQi	эс, т _р , з	flist.	
EW W * W * [337]	13	MGS.AMC Py810					
EW WZ [338]	13	MGS.aMC Py8 corr NLO QCD a	ug EM [339]	- 400	sc, m _j		
EW ZZ [2/7]	13	POWHEG BPX INLO [340]		aQs	JC.		
Diboson Num	18	Generator	Pa	rtons	Partons	PS	ME-PS
State	(TeV)		tot	tal	NLO		scheme
Wγ [311] 2	13	MG5.aMC (NLO)	2		1	Py8	FxFx
Z ₇ [312] 2	13	MG5.aMC (NL0)	2		1	Py8	FxFx
W ⁺ W ⁻ [289] 0-2	13	(POWHEG (NLO) + MCFM (LO)) * K NP	ao [314] 1		0	Py8	-

Process, short description	ME Generator + parton shower	Order	Tune	PDF set in ME
EW, Int, QCD W*W*//, nominal signal	MapGRAPH5_AMC@NLO2.6.7 + HERWIG7.2	LO	HERWIG	NNPDF3.0xLo
EW, Int, QCD W*W* //, alternative shower	ManGRAPH5_AMC@NLO2.6.7 + Pyrnta8.244	LO	A14	NNPDF3.0xLo
EN WART // NLO COCD	SHERFA2.2.11 & SHERFA2.2.2(WWW) &	+0,1j@LO	SHERFA	NNRPER Owner
En n n //, recolpden appane	POWNEDBOX2+Pythia8.235 (WH)	NLO	A14	New DA Statute
EW W*W* //, NLO pQCD approx.	POWHER BOXY2 + PYTHEA8 230	NLO (VBS approx.)	AZNLO	NNPDF3.0xLo
QCD W*W* //, NLO pQCD approx.	Serans2.2.2	+0,1j@LO	SHERPA	NNPDF3.0xxx.c
QCD VV//	Serars2.2.2	+0,1j@NLO; +2,3j@LO	SHERPA	NNPDF3.0xxx.c
EW W^*Z/γ^*JJ	MADGEARD5_AMC@NL02.6.2+Prtma8.235	LO .	A14	NNPDF3.0xLo
EW $Z/\gamma^{*}Z/\gamma^{*}jj$	Serrars 2.2.2	LO	SHERPA	NNPDF3.0xxx.o
$QCD V_{\gamma}//$	Summa2.2.11	+0,1j@NLO; +2,3j@LO	A14	NNPDF3.0xxx.c
EW Vy / j	MADGRAPH5_AMC@NLO2.6.5+Pvmna8.240	1.0	A14	NNPDF3.0xLo
VVV	SHERFA2.2.1 (leptonic) & SHERFA2.2.2 (one V → //)	+0,1j@LO	SHERFA	NNPDF3.0xxx.o
tfV	MARGRAPH5_AMC@NLO2.3.3.p0 + PVTHIA8.210	NLO	A14	NNPDF3.0xLo
rZq	ManGaam6_AMC@NL02.3.3.pl + Pyrma8.212	10	A14	NNPDF2.310
W*W*//EFT	MADGEARIS_AMC@NLO 2.6.5 + Prttea8.235	LO	A14	NNPDF3.0st.o
H,**	MADGRAPHS_AMC@NLO 2.9.5 + PYTHEA8.245	1.0	A14	NNPDF3.0xLo

A.-M. Magnan

Backups o	Single bosons	Dibosons o●ooooooooo	VBS/Tribosons	ATGC/AQGC

Quick recap of new results since 2023

Final state	ATLAS	CMS
W ⁺ W- 13 TeV	CONF-23-012 140 fb ⁻¹ , inclu-	-
	sive XS + differential XS	
W ⁺ W ⁻ 13.6 TeV	-	arXiv:2406.05101
WZ	arXiv:2402.16365 polarisation	[JHEP 07 (2022) 032]
	studies	
ZZ 13.6 TeV	arXiv:2311.09715	-
ZZ 13 TeV	JHEP 12 (2023) 107 140 fb ⁻¹ ,	arXiv:2404.02711 138 fb ⁻¹ ,
	polarisation + CP properties	ZZ+jets differential XS
$Z(\nu\nu)\gamma$ 13 TeV	-	CMS-PAS-SMP-22-009 138
		fb ⁻¹

A.-M. Magnan

Single bosons

Dibosons

EW @ LHC and HL-LHC

VBS/Tribosons

ATGC/AQGC

HILUMI

WW at $\sqrt{s} = 13.6$ TeV

arXiv:2406.05101

		Uncertainty source	$\Delta \mu$
		Integrated luminosity	0.014
		Lepton experimental	0.019
		Jet experimental	0.008
		b tagging	0.012
		Nonprompt background	0.010
		Limited sample size	0.017
		Background normalization	0.018
		Theory	0.011
		Statistical	0.018
		Total	0.044
9	CMS	i	
	•	CMS	
. [•	ATLAS	
102		CDF	e e e e e e e e e e e e e e e e e e e
10	•	00	
		1	
101	, j		
10.	1	/	
		pp NNLO QCD x NLO	DEWK (MATR
1		pp NNEO QCD X NEO	JEWK (MATR
		pp NEO (MATRIX)	
- A O I I I		pp NEO (MATTIX)	
10~			
1.5		····	

12 14 √s (TeV)

arXiv:2311.09715

ZZ at $\sqrt{s} = 13.6$ TeV

Source	Relative uncertainty(%)
Data statistical uncertainty	4.2
MC statistical uncertainty	0.3
Luminosity	2.2
Lepton momentum	0.2
Lepton efficiency	3.7
Background	1.6
Theoretical uncertainty	1.0
Total	6.3

WW at $\sqrt{s} = 13.6$ TeV

arXiv:2406.05101

Quantity	WW	One/two b tags	$Z \to \tau \tau$	Same-sign	
Number of tight leptons	Strictly 2				
Additional loose leptons		0			
Lepton charges		Opposite		Same	
$p_T^{\ell \max}$		>25 Ge	V		
$p_T^{\ell \min}$		>20 Ge	V		
$m_{\ell\ell}$	> 85 GeV	> 85 GeV	$<\!85\mathrm{GeV}$	> 85 GeV	
$p_{T}^{\ell\ell}$	_	_	< 30 GeV	_	
Number of b-tagged jets	0	1/2	0	0	
Nj	$0/1/2/ \ge 3$				
Variable	WZ		ZZ		
Number of tight leptons	Strictly	y 3	Strictly 4		
Additional loose leptons		0			
Lepton p _T	>25/10/2	20 GeV >25/20/1	10/10 GeV ($p_{\rm T}$ ordered)	
$ m_{\ell\ell} - m_Z $	< 15 G	eV <15 GeV (both		pairs)	
$m_{3\ell}$	>100 C	GeV —		-	
$m_{4\ell}$	_		>150 GeV	r	
p_{T}^{miss}	>30 G	eV	_		
Number of b-tagged jets		0			

ATLAS-CONF-2023-012

- Excellent agreement with fixed-order MATRIX predictions.
- EW corr. improve modelling at high diboson mass but over-correct pT(leading lepton) ⇒ related to multiplicative treatment, need mixed QCD+EW effects, in particular for hard QCD radiations.
- PDF choice impacts overall XS prediction.

Data and Stat. Uncertainty

MATRIX 2.0 nNNLO QCD

nNNLO QCD @ NLO EW

+ Sherpa 2.2.2 gg → WW × 1.7 + Sherpa 2.2.12 EW og → WWii

····

m. [GeV]

Total Uncertainty

MININLO+Pythia8*

Sherpa 2.2.12 *

Evidence for $Z_L Z_L$ production

JHEP	12	(2023)	107

		Pre-fi	t	Post-fit
	$Z_{\rm L}Z_{\rm L}$	189.3 ±	8.7	220 ± 54
ZZ	$Z_T Z_L$	710 ±	29	711 ± 29
	$Z_T Z_T$	$2170 \pm$	120	2147 ± 60
	Interference	$33.7 \pm$	2.8	33.4 ± 2.7
Non-prompt		18.7 ±	7.1	18.5 ± 7.0
Others		$20.0 \pm$	3.7	19.9 ± 3.7
Total		$3140 \pm$	150	$3149~\pm~57$
Data		3149		3149

Contribution	Relative uncertainty [%]
Total	24
Data statistical uncertainty	23
Total systematic uncertainty	8.8
MC statistical uncertainty	1.7
Theoretical systematic uncertainties	
$q\bar{q} \rightarrow ZZ$ interference modelling	6.9
NLO reweighting observable choice for $q\bar{q} \rightarrow ZZ$	3.7
PDF, α_s and parton shower for $q\bar{q} \rightarrow ZZ$	2.2
NLO reweighting non-closure	1.0
QCD scale for $q\bar{q} \rightarrow ZZ$	0.2
NLO EW corrections for $q\bar{q} \rightarrow ZZ$	0.2
$gg \rightarrow ZZ$ modelling	1.4
Experimental systematic uncertainties	
Luminosity	0.8
Muons	0.6
Electrons	0.4
Non-prompt background	0.3
Pile-up reweighting	0.3
Triboson and $t\bar{t}Z$ normalisations	0.1

CP-sensitive observables in ZZ production

- Existing constraints on anomalous neutral TGC normally use high-pT observables \Rightarrow very strong constraints but insensitive to CP properties.
- Construct CP-sensitive observable $T_{yz,1(3)} = \sin\phi_{1(3)} \times \cos\theta_{1(3)}.$
- Symmetric for SM, asymmetric for CP-odd ANTGC.

Construct 1-D map out of 2-D distribution.

A.-M. Magnan

67/48

Backups Single bosons Oboocoo Dibosons VBS/Tribosons ATGC/AQGC

Systematics for $f_{\rm 00}$ in WZ production

arXiv:2402.16365

Source	Impact on foo [%]		
Experimental	$100 < p_T^Z \leq 200 \; \mathrm{GeV}$	$p_T^Z > 200 \text{ GeV}$	
Luminosity	0.1	0.2	
Electron calibration	1.0	0.9	
Muon calibration	1.1	1.3	
Jet energy scale and resolution	5.9	9.0	
E_T^{miss} scale and resolution	1.0	0.6	
Flavor-tagging inefficiency	0.1	0.2	
Pileup modelling	1.6	1.1	
Non-prompt background estimation	5.8	0.8	
Modelling			
Background, other	1.4	1.6	
Model statistical	2.5	5.6	
NLO QCD effects	6.8	8.2	
NLO EW effects	1.1	3.3	
Effect of additive vs multiplicative QCD+EW combination	1.3	3.8	
Interference impact	1.4	0.7	
PDF, Scales, and shower settings	3.5	9.2	
Experimental and modelling	12.1	17.7	
Data statistical	18.0	64.5	
Total	21.7	66.9	

ATLAS: arXiv:2403.15296

- Using 140 fb⁻¹, 3 leptons (e,μ) + 2j m_{jj} > 500 GeV
- BDT used to separate EW and strong productions.
- Extract cross section and differential distributions.
- Dominant uncertainties: syst from theory modelling.

[CMS: PLB 809 (2020) 135710]

ATLAS: arXiv:2403.04869

[CMS result: PLB 841 (2023) 137495]

- Using 140 fb⁻¹, $e+\mu+2j$ final state, = 2 and \geq 3 jet categories.
- Signal extraction using a likelihood fit to Neural Network outputs.
- Top (66% of SR) and strong production (24% of SR) as free parameters.

Back	ups Sing	l e bosons	[Dibosons		VBS/Tribos 00●0000	ons	ATGC/AC	IGC 00000000
E۷	V productio	n of W $_{\gamma}$	/ +2j				ATLAS EXPERIMENT		
(ATLAS: arXiv:2 ● 140 fb ⁻¹ , ℓ (e	2403.02809 ,μ)+γ+2j m	9 n _{jj} > 500) GeV, ∆ <i>y</i>	′ _{jj} > 2.0.	[CMS: P	RD 108 (202	3) 0320	17]
-	Fiducial cross-section	SR^{fid} $N_{jets}^{gap} = 0$)	CR^{fid} $N_{jets}^{gap} >$	0		$\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^1$ $EW W(\rightarrow lv)\gamma jj$ Data (syst) (total) 13.2±2.5 fb		
-	Differential cross-section $m_{jj} > 1$ TeV	$\frac{SR}{N_{jets}^{gap} = 0} \qquad N$ $\frac{\xi_{l\gamma} < 0.35}{\xi_{l\gamma}} \qquad \xi_{l\gamma}$	CR_A $g_{ap}^{gap} > 0$ $c < 0.35 0.3$	$\frac{CR_B}{N_{jets}^{gap} > 0}$ $35 < \xi_{l\gamma} < 1 = 0$	$\frac{CR_C}{N_{jets}^{gap} = 0}$ $0.35 < \xi_{l\gamma} < 1$		Sherpa 2.2.12	- Φ -1 α _s) fb	
왕 160 실 140 120 100	0 - ATLAS fS = 13 TeV, 140 fb ⁻¹ 0 - EW W(→/ν)γjj CR ^{He} 0 - Post-Fit 0 -	Data EW Wyjj Strong Wyjj Non-prompt Top Bkg. Zyjj ∭Uncertainty	2 1800 470 1600 1600 1400 SR ⁶ 1200 1000	AS 13 TeV, 140 fb ⁻¹ ^M (→ <i>I</i> ν)γjj t-Fit	Data EW Wyij Strong Wyij Non-prompt Top Bkg. Zyij Wuncertainty	0	MadGraph5+Pythia8 13.0 ^{+0.3} $_{0.7}^{0.3}$ (scale) ^{+0.4} $_{0.4}^{0.4}$ (stat+PDF) 0 2 4 6 8	+α _a) fb 10 12 σ ^{fid} _{EW}	→ 14 16 18 _{W(→Iν)γjj} [fb]
80 60 40 20 20 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.		0.7 0.8 0.9 1	800 600 400 200 1.1.1 1.1 0.9 0.9 0.9 0.9 0.0 0.0			Uncertai Statistics Jets Lepton, EW $W\gamma$, Strong W Non-pro Luminos Other B: E_{mis}^{mis}	inty Source s photon, pile-up jj modelling Wγjj modelling mpt background sity ackground modelling	Fractional U	ncertainty [%]
		NN score			NN score	-			

A.-M. Magnan

EW @ LHC and HL-LHC

10/07/2024, LCWS 2024 71 / 48

Single bosons

Dibosons 00000000000 VBS/Tribosons 0000€00 ATGC/AQGC

EW production of Z γ +2j

ATLAS: EPJC 82 (2022) 105

- 140 fb⁻¹, Z $\rightarrow \nu\nu+\gamma+2$ j m_{jj} > 500 GeV, $\Delta y_{jj} > 3.0.$
- Significance: 5.2σ (exp. 5.1σ).
- $\sigma_{\text{meas}} = 1.31 \pm 0.20(\text{stat}) \pm 0.20(\text{syst}) \text{ fb} \Rightarrow$ Precision 22%.

CMS: PRD 104 (2021) 072001

- 137 fb⁻¹, Z $\rightarrow \ell\ell + \gamma + 2j m_{jj} > 500$ GeV, $\Delta y_{jj} > 2.5$.
- Significance: 9.4 σ (exp. 8.5 σ).
- $\sigma_{\text{meas}} = 5.21 \pm 0.52(\text{stat}) \pm 0.56(\text{syst}) \text{ fb} \Rightarrow$ Precision 15%, syst dominated.

A.-M. Magnan

EW @ LHC and HL-LHC

10/07/2024, LCWS 2024 74 / 48

MC for LHC tribosons results

arXiv:2405.18661

Process	Energy (TeV)	Theory calculation	Other results
Wγγ [317]	8	MG5_aMC Py6 NLO	aQGC
W $\gamma\gamma$ [318]	13	MG5_aMC Py8 NLO	aQGC
$Z\gamma\gamma$ [317]	8	MG5_aMC Py6 NLO	aQGC
$Z\gamma\gamma$ [318]	13	MG5_aMC Py8 NLO	aQGC
WVγ [319]	8	MG5_aMC Py8 NLO	aQGC
WWγ [320]	13	MG5_aMC Py8 NLO	aQGC, H γ search
VVV [316]	13	NLO [321,322,323]	VH production
WWW [316]	13	NLO [321,322,323]	VH production
WWZ [316]	13	NLO [321,322,323]	VH production
WZZ [316]	13	NLO [321,322,323]	VH production
ZZZ [316]	13	NLO [321,322,323]	VH production

Single bosons

Dibosons 00000000000 VBS/Tribosons

ATGC/AQGC

EFT in practice and validity

- Usually: for ATGC, sensitive to dim-6 operators, for AGQC, sensitive to dim-8.
- Generation of events using MG5 for each coupling independently.
- Add events to SM predictions, and perform likelihood fit using most-sensitive variable.
- Variable: usually m_{VV} or CP sensitive variable to test CP-odd operators.
- Extract 95%CL limits on single / pair of operators.
- To test impact of missing higher-order terms: remove quartic couplings for the dimension considered ⇒ impact on limits ⇔ estimate from missing higher-orders.

Validity of this approach

- Validity limited to $E << \Lambda$.
- Upper cut E_c on m_{VV} for EFT components, preserve unitarity at high energy scale.
- Study 95%CL interval vs E_c.
- More conservative limits at crossing btw observed limit and unitarity bound.

Anomalous couplings in WZ+2j

- 2-D BDT-m_T^{WZ} to look for dim-8 operators
- Limits competitive with CMS from [Phys. Lett. B 809 (2020) 135710].

			- 2 <mark>000000000000000000000000000000000000</mark>
	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]	- → ATLAS — Observed 95% CL limit ↓ 1.5 + € = 13 TeV, 140 fb ⁻¹ ····· Expected 95% CL limit
$\frac{f_{\rm T0}/\Lambda^4}{f_{\rm T1}/\Lambda^4} \\ \frac{f_{\rm T2}/\Lambda^4}{f_{\rm M0}/\Lambda^4} \\ \frac{f_{\rm M1}/\Lambda^4}{f_{\rm M1}/\Lambda^4} \\ \frac{f_{\rm M7}/\Lambda^4}{f_{\rm S02}/\Lambda^4} \\ \frac{f_{\rm S1}/\Lambda^4}{f_{\rm S1}/\Lambda^4}$	$\begin{matrix} [-0.80, \ 0.80] \\ [-0.52, \ 0.49] \\ [-1.6, \ 1.4] \\ [-8.3, \ 8.3] \\ [-12.3, \ 12.2] \\ [-16.2, \ 16.2] \\ [-14.2, \ 14.2] \\ [-42, \ 41] \end{matrix}$	$\begin{matrix} [-0.57, \ 0.56] \\ [-0.39, \ 0.35] \\ [-1.2, \ 1.0] \\ [-5.8, \ 5.6] \\ [-8.6, \ 8.5] \\ [-11.3, \ 11.3] \\ [-10.4, \ 10.4] \\ [-30, \ 30] \end{matrix}$	
$f_{ m T0}/\Lambda^4$ $f_{ m T1}/\Lambda^4$	Expected [TeV ⁻⁴] [-7.0, 7.0] [-1.1, 1.0]	Observed [TeV ⁻⁴] [-1.5, 1.6] [-0.7, 0.6]	47LAS 6 − 13 TeV, 140 b ⁻¹ 7 2 7 0
f_{T2}/Λ^4 f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M7}/Λ^4 f_{S02}/Λ^4	$\begin{bmatrix} -12, \ 6 \end{bmatrix} \\ \begin{bmatrix} -60, \ 60 \end{bmatrix} \\ \begin{bmatrix} -32, \ 32 \end{bmatrix} \\ \begin{bmatrix} -30, \ 30 \end{bmatrix} \\ \begin{bmatrix} -41, \ 41 \end{bmatrix}$	$\begin{array}{c} [-2.4, \ 1.8] \\ [-12, \ 12] \\ [-15, \ 15] \\ [-15, \ 15] \\ [-18, \ 18] \end{array}$	% CL intervation 1 % CL intervation 1 %
$f_{\rm S1}/\Lambda^4$		_	86 <u>1</u>

JHEP 01 (2024) 004

ATLAS

Expected 95% confidence interval

Observed 95% confidence interval

E. ITeVI

Unitarity Bound

s = 13 TeV, 140 fb⁻¹

- Sensitive to dim-8 operators, using 2D m_{4ℓ}-m_{jj} distributions.
- Limits also set on dim-6 operators using $\Delta \phi_{ii}$ variable for CP-odd coefficients.

Wilson	$ M_{d8} ^2$	95% confidence	interval [TeV-4]
coefficient	Included	Expected	Observed
$f_{T,0}/\Lambda^4$	yes	[-0.98, 0.93]	[-1.00, 0.97]
	no	[-23, 17]	[-19, 19]
$f_{T,1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]
	no	[-160, 120]	[-140, 140]
$f_{T,2}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-74, 56]	[-63, 62]
$f_{T,5}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-79, 60]	[-68, 67]
$f_{T,6}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]
	no	[-64, 48]	[-55, 54]
$f_{T,7}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]
	no	[-260, 200]	[-220, 220]
$f_{T,8}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]
	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴
$f_{T,9}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]
	no	[-7.5, 5.5]×10 ⁴	[-6.4, 6.3]×10 ⁴

CMS limits (Phys. Lett. B 812 (2020) 135992):

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T0}/Λ^4	-0.37	0.35	-0.24	0.22	2.4
f_{T1}/Λ^4	-0.49	0.49	-0.31	0.31	2.6
f_{T2}/Λ^4	-0.98	0.95	-0.63	0.59	2.5
f_{T8}/Λ^4	-0.68	0.68	-0.43	0.43	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92	0.92	1.8

Backups o	Single bosons	Dibosons 00000000000	VBS/Tribosons	ATGC/AQGC

Anomalous couplings in $W\gamma$ +2j

ATLAS: arXiv:2403.02809

- Limits on dim-8 operators, using p_T^{ℓ} (mixed scalar operators) or p_T^{jj} (tensor-type operators).
- First limits on f_{T3} and f^{T4} at the LHC.
- Limits \simeq insensitive to E_c.

Cofficients [TeV-4]	Observable	$M_{W\gamma}$ cut-off [TeV]	Expected [TeV ⁻⁴]	Observed [TeV ⁻⁴]
f_{T0}/Λ^4	p_T^{JJ}	1.4	[-2.5, 2.6]	[-1.9, 1.9]
f_{T1}/Λ^4	p_T^{jj}	1.9	[-1.6, 1.6]	[-1.1, 1.2]
f_{T2}/Λ^4	p_T^{jj}	1.6	[-4.9, 5.3]	[-3.6, 4.0]
f_{T3}/Λ^4	p_T^{jj}	1.9	[-3.4, 3.6]	[-2.5, 2.7]
f_{T4}/Λ^4	p_T^{jj}	2.2	[-3.1, 3.1]	[-2.2, 2.3]
f_{T5}/Λ^4	p_T^{jj}	1.8	[-1.8, 1.8]	[-1.3, 1.3]
f_{T6}/Λ^4	p_T^{jj}	2.1	[-1.5, 1.5]	[-1.1, 1.1]
f_{T7}/Λ^4	p_T^{jj}	2.1	[-4.0, 4.1]	[-2.9, 3.0]
f_{M0}/Λ^4	p_T^2	1.1	[-45, 44]	[-32, 31]
f_{M1}/Λ^4	p_T^I	1.4	[-60, 62]	[-43, 44]
f_{M2}/Λ^4	p_T^l	1.4	[-15, 15]	[-11, 11]
f_{M3}/Λ^4	p_T^l	1.8	[-22, 22]	[-16, 16]
f_{M4}/Λ^4	p_{τ}^{i}	1.5	[-28, 27]	[-20, 20]
f_{M5}/Λ^4	p_T^l	1.9	[-21, 23]	[-14, 17]
f_{M7}/Λ^4	p_T^l	1.5	[-100, 99]	[-73, 71]

 CMS obtains better sensitivity using m_{Wγ} and strong+EW contributions [PRD 108 (2023) 032017]

Expected limit	Observed limit	U _{bound}
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0}/\Lambda^4 < 5.5$	1.7
$-7.1 < f_{M,1} / \Lambda^4 < 7.4$	$-7.8 < f_{M,1} / \Lambda^4 < 8.1$	2.1
$-1.8 < f_{M2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M3}/\Lambda^4 < 2.5$	$-2.7 < f_{M3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4}/\Lambda^4 < 3.3$	$-3.7 < f_{M,4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M5}/\Lambda^4 < 3.6$	$-3.9 < f_{M5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T_1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{TS} / \Lambda^4 < 0.31$	$-0.31 < f_{TS}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T.6} / \Lambda^4 < 0.25$	$-0.25 < f_{T.6} / \Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7}/\Lambda^4 < 0.68$	$-0.67 < f_{T,7}/\Lambda^4 < 0.73$	3.1

A.-M. Magnan

EW @ LHC and HL-LHC

- Dimension-6 EFT: quadratic Λ⁻² interference + quartic Λ⁻⁴ pure BSM.
- Dimension-8 EFT: additional quartic Λ⁻⁴ interference.
- test impact by dropping quartic contributions.

Anomalous couplings in ssWW and WZ+2j

CMS: Phys. Lett. B 809 (2020) 135710

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
f_{T0}/Λ^4	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
f_{T1}/Λ^4	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
f_{T2}/Λ^4	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0 , 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
$f_{\rm M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
f_{M6}/Λ^4	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]
$f_{\rm M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
f_{S0}/Λ^4	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]
	Observed ($W^{\pm}W^{\pm}$)	Expected (W [±] W [±])	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV ⁻⁴)	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
	(()	()	()	()	(10)
f_{T0}/Λ^4	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
f_{T0}/Λ^4 f_{T1}/Λ^4	[-1.5, 2.3] [-0.81, 1.2]	[-2.1, 2.7] [-0.98, 1.4]	[-1.6, 1.9] [-1.3, 1.5]	[-2.0, 2.2] [-1.6, 1.8]	[-1.1, 1.6] [-0.69, 0.97]	[-1.6, 2.0] [-0.94, 1.3]
f_{T0}/Λ^4 f_{T1}/Λ^4 f_{T2}/Λ^4	[-1.5, 2.3] [-0.81, 1.2] [-2.1, 4.4]	[-2.1, 2.7] [-0.98, 1.4] [-2.7, 5.3]	[-1.6, 1.9] [-1.3, 1.5] [-2.7, 3.4]	[-2.0, 2.2] [-1.6, 1.8] [-4.4, 5.5]	[-1.1, 1.6] [-0.69, 0.97] [-1.6, 3.1]	[-1.6, 2.0] [-0.94, 1.3] [-2.3, 3.8]
f_{T0}/Λ^4 f_{T1}/Λ^4 f_{T2}/Λ^4 f_{M0}/Λ^4	[-1.5, 2.3] [-0.81, 1.2] [-2.1, 4.4] [-13, 16]	[-2.1, 2.7] [-0.98, 1.4] [-2.7, 5.3] [-19, 18]	[-1.6, 1.9] [-1.3, 1.5] [-2.7, 3.4] [-16, 16]	[-2.0, 2.2] [-1.6, 1.8] [-4.4, 5.5] [-19, 19]	[-1.1, 1.6] [-0.69, 0.97] [-1.6, 3.1] [-11, 12]	[-1.6, 2.0] [-0.94, 1.3] [-2.3, 3.8] [-15, 15]
$ \begin{array}{c} f_{\rm T0}/\Lambda^4 \\ f_{\rm T1}/\Lambda^4 \\ f_{\rm T2}/\Lambda^4 \\ f_{\rm M0}/\Lambda^4 \\ f_{\rm M1}/\Lambda^4 \end{array} $	[-1.5, 2.3] [-0.81, 1.2] [-2.1, 4.4] [-13, 16] [-20, 19]	[-2.1, 2.7] [-0.98, 1.4] [-2.7, 5.3] [-19, 18] [-22, 25]	[-1.6, 1.9] [-1.3, 1.5] [-2.7, 3.4] [-16, 16] [-19, 20]	[-2.0, 2.2] [-1.6, 1.8] [-4.4, 5.5] [-19, 19] [-23, 24]	[-1.1, 1.6] [-0.69, 0.97] [-1.6, 3.1] [-11, 12] [-15, 14]	[-1.6, 2.0] [-0.94, 1.3] [-2.3, 3.8] [-15, 15] [-18, 20]
f_{T0}/Λ^4 f_{T1}/Λ^4 f_{T2}/Λ^4 f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M6}/Λ^4	[-1.5, 2.3] [-0.81, 1.2] [-2.1, 4.4] [-13, 16] [-20, 19] [-27, 32]	[-2.1, 2.7] [-0.98, 1.4] [-2.7, 5.3] [-19, 18] [-22, 25] [-37, 37]	[-1.6, 1.9] [-1.3, 1.5] [-2.7, 3.4] [-16, 16] [-19, 20] [-34, 33]	[-2.0, 2.2] [-1.6, 1.8] [-4.4, 5.5] [-19, 19] [-23, 24] [-39, 39]	[-1.1, 1.6] [-0.69, 0.97] [-1.6, 3.1] [-11, 12] [-15, 14] [-22, 25]	[-1.6, 2.0] [-0.94, 1.3] [-2.3, 3.8] [-15, 15] [-18, 20] [-31, 30]
f_{T0}/Λ^4 f_{T1}/Λ^4 f_{T2}/Λ^4 f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M6}/Λ^4 f_{M7}/Λ^4	[-1.5, 2.3] [-0.81, 1.2] [-2.1, 4.4] [-13, 16] [-20, 19] [-27, 32] [-22, 24]	[-2.1, 2.7] [-0.98, 1.4] [-2.7, 5.3] [-19, 18] [-22, 25] [-37, 37] [-27, 25]	[-1.6, 1.9] [-1.3, 1.5] [-2.7, 3.4] [-16, 16] [-19, 20] [-34, 33] [-22, 22]	[-2.0, 2.2] [-1.6, 1.8] [-4.4, 5.5] [-19, 19] [-23, 24] [-39, 39] [-28, 28]	[-1.1, 1.6] [-0.69, 0.97] [-1.6, 3.1] [-11, 12] [-15, 14] [-22, 25] [-16, 18]	[-1.6, 2.0] [-0.94, 1.3] [-2.3, 3.8] [-15, 15] [-18, 20] [-31, 30] [-22, 21]
f_{T0}/Λ^4 f_{T1}/Λ^4 f_{T2}/Λ^4 f_{M0}/Λ^4 f_{M1}/Λ^4 f_{M6}/Λ^4 f_{M7}/Λ^4 f_{S0}/Λ^4	[-1.5, 2.3] [-0.81, 1.2] [-2.1, 4.4] [-13, 16] [-20, 19] [-27, 32] [-22, 24] [-35, 36]	[-2.1, 2.7] [-0.98, 1.4] [-2.7, 5.3] [-19, 18] [-22, 25] [-37, 37] [-27, 25] [-31, 31]	[-1.6, 1.9] [-1.3, 1.5] [-2.7, 3.4] [-16, 16] [-19, 20] [-34, 33] [-22, 22] [-83, 85]	[-2.0, 2.2] [-1.6, 1.8] [-4.4, 5.5] [-19, 19] [-23, 24] [-39, 39] [-28, 28] [-88, 91]	[-1.1, 1.6] [-0.69, 0.97] [-1.6, 3.1] [-11, 12] [-15, 14] [-22, 25] [-16, 18] [-34, 35]	[-1.6, 2.0] [-0.94, 1.3] [-2.3, 3.8] [-15, 15] [-18, 20] [-31, 30] [-22, 21] [-31, 31]

.

Single bosons

Dibosons 0000000000000 VBS/Tribosons

ATGC/AQGC

Sensitivity to couplings

Individual contraints - Best variables

On	SSWV	V+2j	OSV	/W+2j	WZ	?+2j	ZZ	:+2j	ZV	'+2j	v	w
op.	L	L+Q	L	L+Q	L	L+Q	L	L+Q	L	L+Q	L	L+Q
c _{Hl} ⁽¹⁾	-	m _{ll}	-	MET	m_{ee}^{\dagger}	m _{WZ}	р _{т,е-µ-} †	р _{т,е-µ-}	p_{T,j_1}^V	p_{T,j_1}^V	p_{T,l^2}	MET
C ⁽¹⁾ Hq	$p_{T,j^{\dagger}}$	p_{T,j^1}	m _{jj}	m_{ll}	m _{jj}	$p_{T,j^{\gamma}}$	m _{jj}	p_{T,j^1}	m_{jj}^{VBS}	т ^{увs}	MET	MET
$c_{Hq}^{(3)}$	$\Delta \phi_{jj}$	$\Delta \phi_{jj}$	m_{ll}	m _{ll}	$\Delta \phi_{jj}^{\dagger}$	p_{T,l^2}	$\Delta \phi_{jj}^{\dagger}$	p_{T,l^4}	p_{T,j_2}^{VBS}	p_{T,j_2}^{VBS}	p_{T,l^1}	p_{T,l^1}
$c_{qq}^{(3)}$	m_{ll}^{\dagger}	p_{T,j^2}	m _{jj}	p_{T,j^2}	m _{jj}	p_{T,j^2}	m _{jj}	p_{T,j^1}	$p_{T,l^{\dagger}}^{\dagger}$	$\Delta \phi_{jj}^{VBS}$	-	-
$c_{qq}^{(3,1)}$	$\Delta \phi_{jj}$	p_{T,j^2}	m _{jj}	p_{T,j^2}	m _{jj}	p_{T,j^2}	m _{jj}	p_{T,j^1}	$\Delta \eta_{jj}^{V\dagger}$	$\Delta \phi_{jj}^{VBS}$	-	-
$c_{qq}^{(1,1)}$	$\Delta \phi_{jj}$	p_{T,j^1}	р _{т, ј2}	p_{T,j^2}	р _{т,j²}	$p_{T,j^{\eta}}$	p_{T,j^2}	p_{T,j^2}	$\Delta \phi_{jj}^{\rm VBS}$	p_{T,j_1}^{VBS}	-	-
$C_{qq}^{(1)}$	p_{T,j^1}	p_{T,j^1}	p_{T,j^2}	p_{T,j^2}	p_{T,j^2}	p_{T,j^2}	p_{T,j^2}	p_{T,j^2}	$\Delta \phi_{jj}^{\rm VBS}$	p_{T,j_1}^{VBS}	-	-
c _{Hl} ⁽³⁾	$\Delta \eta_{jj}^{\dagger}$	$\Delta \eta_{jj}^{\dagger}$	m_{jj}^{\dagger}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	m _{jj}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	$\Delta \eta_{jj}^V$	$\Delta \eta_{jj}^V$	m_{ll}^{\dagger}	m_{ll}^{\dagger}
C _{HD}	p _{T,j1}	m_{ll}	$\Delta \eta_{jj}$	$\Delta \eta_{jj}$	m _{ee}	$\Delta \eta_{jj}^{\dagger}$	$p_{T,e^+\mu^+}$	$p_{T,e^+\mu^+}$	p_{T,l^2}	$p_{T,P}$	p_{T,l^1}	$p_{T,l^{1}}$
$c_{ll}^{(1)}$	m_{jj}^{\dagger}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	m _{jj}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	$\Delta \eta_{jj}^{V\dagger}$	$\Delta \eta_{jj}^{V\dagger}$	$p_{T,ll}^{\dagger}$	p_{T,l^2}
C _{HWB}	p _{T,j1}	p_{T,j^1}	$\Delta \eta_{jj}$	m_{ll}	m _{ee}	m _{WZ}	$m_{\mu\mu}{}^\dagger$	$\Delta \eta_{jj}$	$\Delta \eta_{jj}^V$	$\Delta \eta_{jj}^V$	p_{T,l^1}	MET
C _{H□}	p _{T,j} ,	m_{ll}	m _{ll}	m_{ll}	-	m _{WZ}	-	$\Delta \eta_{jj}$	p_{T,j_2}^V	p_{T,j_2}^V	-	-
c _{HW}	$\Delta \phi_{jj}$	m_{ll}	$\Delta \phi_{jj}$	m_{ll}	η_B^{\dagger}	m _{WZ}	m _{jj}	m_{4l}	p_{T,j_1}^{VBS}	p_{T,j_2}^V	-	-
Cw	$\Delta \phi_{ii}$	р т II	$\Delta \phi_{ii}$	m_{ll}	p _{T.} r	m _{wz}	$\Delta \phi_{ii}$	PT IS	$\Delta \phi_{ii}^{VBS\dagger}$	$\Delta \phi_{ii}^{VBS}$	MET	MET

Observables ranking change from Lin to Lin+Quad. Best observable group usually match prior knowledge about the operator.

A.-M. Magnan

 $\mathbf{Z}\gamma \rightarrow \nu \nu \gamma$ and Neutral aTGC

Dibosons 00000000000 VBS/Tribosons

ATGC/AQGC

CMS-PAS-SMP-22-009

- Cross section in agreement with predictions.
- Anomalous couplings from vertex functions, 4 parameters for Z/γ in anomalous neutral TGC.
- Most stringent CMS limits to date !
- Using unfolded p_T^{γ} distribution.

_

Dibosons 00000000000 VBS/Tribosons

ATGC/AQGC

EFT interpretation

ATL-PHYS-PUB-2021-022

 Correlation of systematics between measurements taken into account

Correlated Uncertainty Source	WW	WZ	4ℓ	VBF Z
Luminosity (correlated part)	~	1	1	1
Luminosity 2015/16	1	1	\checkmark	1
Luminosity 2017/18			\checkmark	1
Lepton efficiency (correlated part)	1	1	\checkmark	1
Pile-up modelling	\checkmark	1	\checkmark	1
Pile-up jet suppression	\checkmark			~
Jet energy scale (Pile-up modelling)	\checkmark			~
Jet energy scale η -inter-calibration	~			\checkmark

- Limits at 95% CL for linear and linear+quadratic fits (to illustrate the effect of truncation of EFT expansion)
- Fits of individual coefficients (with others set to zero) as well as combined fit
- No deviations from SM found

Step forward towards global EFT interpretations!

36

