

Emittance tuning knobs for CLIC ML LCWS 2024, July 8-11, 2024

Andrii Pastushenko

10/07/2024

CLIC 380 GeV

CERN

Emittance budget

- A nanometer vertical beam size at the IP calls for a very small vertical emittance. Limiting emittance growth throughout the beamline is crucial.
- Each CLIC subsystem has allocated emittance growth budget for **static** and **dynamic** imperfections. Respecting these allows CLIC to meet the target luminosity.
- For ML, the budget is **5 nm for static imperfections** and **5 nm for dynamic imperfections**.
- The budget is met by utilizing various **Beam Based Alignment** techniques.

Section	c [nm]	$\Delta \epsilon_x$ [nm]			c [nm]	$\Delta \epsilon_y$ [nm]		
Section	ϵ_x [mm]	Design	Static	Dynamic	ϵ_y [mm]	Design	Static	Dynamic
DR	700	-	-	-	5	-	-	-
RTML	850	100	20	30	10	1	2	2
ML	900	0	25	25	20	0	5	5
BDS	950	0	25	25	30	0	5	5

CLIC 380 GeV

Integrated simulations

- The vertical budgets are the similar to the 3 TeV design. Typically, it is easier to meet the budget for 380 GeV.
- Integrated simulations starting from the exit of the DR to the IP including static errors give the average luminosity of ¹:

$$\mathcal{L} = (3.0 \pm 0.4) \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

• With ground motion included:

$$\mathcal{L} = (2.8 \pm 0.3) \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

• 90% of the machines reach:

$$\mathcal{L} = 2.35 \times 10^{34} cm^{-2} s^{-1}$$
 Design luminosity is 1.5x10³⁴cm⁻²s⁻¹

¹<u>C. Gohil, et. al.</u> "Luminosity performance of the Compact Linear Collider at 380 GeV with static and dynamic imperfections", 2020

CLIC ML alignment

²N. Blaskovic Kraljevic, D. Schulte, "Beam-based beamline element alignment for the main linac of the 380 GeV stage of CLIC", IPAC 2019

CLIC ML alignment

 Wakefield monitors (WFMs) are very important for the RF alignment. So far the accuracy we used is 3.5 µm. Changes to the accuracy influences the performance:

With accuracy > 7.5 µm, static error budget is not met!

Realistic value so far is 10 µm³.

• We need some margin here and tools to reduce the emittance to be within the budget!

³K. N. Sjobak, et. al., "CLIC Wake Field Monitor as a detuned Cavity Beam Position Monitor: ..", arXiv:2307.06681

Emittance tuning knobs

- Residual emittance growth comes from the wakefields of the misaligned accelerating structures.
- To compensate the unwanted wakefield kicks, we need to offset the beam vertically inside of the cavities. This can be done by **misaligning cavities** (girders) or creating orbit bumps with **displaced quadrupoles.**
- Emittance tuning knob⁴ is a set of elements offset that allows to reduce the emittance growth.

 $\epsilon_y = f(\epsilon_{y,0}, A(\mathbf{Y}_1), A(\mathbf{Y}_2), ..)$

Evaluate potential of using the tuning knobs to: **squeeze down the budget for static errors** and **provide a backup solution for RF alignment.**

⁴<u>A. Pastushenko, D. Schulte,</u> "*Emittance tuning bumps for the Main Linac of CLIC 380 GeV*", IPAC 2023, THPL087

Macroparticle model of the beam

- The beam is represented by a set of macroparticles.
- The beam is cut longitudinaly with multiple macroparticles in each slice. Macroparticles within each slice have different energies to simulate the beam energy spread.
- Each macroparticle is characterized with $x, y, x', y', \Delta s$, t and also the 2nd momentas, $\sigma_{xy}, \sigma_{xx}, ...$ and also with a weight w

Emittance of the macroparticle beam

• Emittance of the macroparticle beam writes:

$$\epsilon_{y}^{2} = \gamma^{2} \left[\left(\sum_{i,j=1}^{M} A_{ij} y_{i} y_{j} + \tilde{\sigma}_{yy} \right) \left(\sum_{i,j=1}^{M} A_{ij} y_{i}' y_{j}' + \tilde{\sigma}_{y'y'} \right) - \left(\sum_{i,j=1}^{M} A_{i,j} y_{i} y_{j}' + \tilde{\sigma}_{yy'} \right)^{2} \right]$$

M is the number of macropartiles; (y_i, y'_i) – coordinates of the macroparticle; $\tilde{\sigma}_{yy}$, $\tilde{\sigma}_{y'y'}$, and $\tilde{\sigma}_{yy'}$ are the variances, when the macroparticles are transversally aligned; $A_{ij} = w_i (\delta_{ij} - w_j)$ with w_i being the weight of ith macroparticle.

 Expanded without 4th-order terms (*valid for analyzing the data after the RF alignment*), emittance growth due to transverse motion of macroparticles:

$$\epsilon_{y}^{2} - \epsilon_{y,o}^{2} = \gamma^{2} [\langle y | \langle y' |] \hat{M} \begin{bmatrix} |y\rangle \\ |y'\rangle \end{bmatrix}, \text{ with block-matrix } \hat{M} = \begin{bmatrix} \tilde{\sigma}_{y'y'} \hat{A} & -\tilde{\sigma}_{yy'} \hat{A} \\ -\tilde{\sigma}_{yy'} \hat{A} & \tilde{\sigma}_{yy} \hat{A} \end{bmatrix}$$

• With **Cholesky decomposition**, we establish a set of **normalized coordinates** $|y_n\rangle$: $\gamma^2 \widehat{M} = \widehat{L}\widehat{L}^T, |Y_n\rangle = \widehat{L}^T \begin{bmatrix} |y\rangle \\ |y'\rangle \end{bmatrix}$. Such that emittance growth writes $\epsilon_y^2 - \epsilon_{y,o}^2 \sim \langle Y_n | Y_n \rangle$

Emittance of the macroparticle beam

e has its unique vector al to the emittance

From **PCA** we can evaluate how much of the emittance growth, each principal direction carries.

Or, if we assume we **can correct first** *N* **principal components**, what RMS emittance growth we can expect after that:

Knobs construction using pseudo-inverse

There are several degrees of freedom when constructing the knobs using pseudo-inverse:

- Elemens to use for the knob construction Quads, Girders, Quads+Girders.
- Cutoff in the pseudo-inverse. Pseudo-inverse matrix is evaluated with Singular Value Decomposition (SVD):

$$\hat{R}^{\dagger} = \hat{V}\hat{E}^{\dagger}\hat{U}^{T}$$

So, we can set the limit (cutoff) to zero the nonimportant singular values.

 $|\Delta_i
angle = \lambda\widehat{R}^\dagger|I_i
angle$ \widehat{R}^\dagger is a pseudo-inverse matrix.

The knob Y_i applies the offsets equal to $|\Delta_i\rangle$.

Knobs construction using pseudo-inverse

By finding the balance between the knob performance and offsets we construct

Optimal cutoff is around $10^{-4} - 10^{-3}$. The girders' offsets are around $6 - 20 \mu m$. The knobs Y₇ and Y₈ cannot be constructed.

Optimal knobs

The optimal knob should:

- > Be based on the offsets of couple tens of girders/quadrupoles.
- Have a reasonable offsets associated with it. Offsets at the mm level mechanically are not possible. At the same time, they cannot be too small.
- > Beam orbit to be controlled. It must stay at the reasonable level.

The task to be solved:

$$\left(\begin{array}{c} \min \|\widehat{R}|\Delta\rangle - |I_j\rangle\| + \begin{cases} |\Delta_i| \in [\Delta_{min}, \Delta_{max}] \\ \min \|\widehat{R}_{orbit}|\Delta\rangle \\ \end{cases} \right)$$

And use the smallest number of quads/structures!

Optimal knobs

We build a model in Tensorflow: linear model with custom regularization:

- The offsets < 1 μm (< 10 μm for girders) are penalyzed ('Zero penalty').
- The large values are clipped to **100 µm**.
- The RMS beam orbit (among all the BPMs) is penalyzed. Also, to deal with the outliners, additional penalty is added for the BPMs with orbit > 20 μm.

+ no orbit change at the ML exit.

We search for the optimal setup of the quads/girders by applying Forward Feature Selection (FFS).

To quantify the solutions I use the custom score, that I called orthogonality:

$$O(Y_i) = \frac{Y_{p,i}^2}{\sum_{j=1}^M Y_{p,j}^2}$$

 $Y_{p,i}$ - Beam ith coordinate in the PCA space

- $O(Y_i)$ stays in the range [0, 1].
- For $O(Y_i) > 0.5$ it is possible to perform emittance tuning – multiple iterations might be needed.
- Case $O(Y_i) = 1.0$ is ideal. 1 knob iterations is enough.

Optimal knobs

1.01.0 Score - Score 0.80.80.6 0.6Score Y_2 Y_1 Score 0.4 0.40.20.20.0 0.0253051015200 152530 0 51020Iteration Iteration 1.01.0- Score - Score 0.80.80.60.6Score Y_5 Score **Y**₁₀ 0.40.40.20.20.05101520250 300.05101520250 Iteration Iteration

Some examples of the Sequential Selection

Knobs construction summary

Knob	Score	N_elements
Y1	0.96	12
Y2	0.96	15
Y3	0.97	10
Y4	0.95	9
Y5	0.97	13
Y6	0.96	23
Y7*	0.92	10
Y8*	0.96	19
Y9	0.96	19
Y10	0.96	25

The set is featured here: https://github.com/drozzoff/CLIC380_li nac_knobs/tree/2024_03_07

Optimal knobs

Tuning performance

To check the performance of the knobs we simulate the BBA and knobs tuning for in PLACET for 1000 machines

The setup:

- 1. Distribute randomly the static imperfections after the prealignment.
- 2. Apply the BBA: 1-2-1 correction, DFS, and RF alignment
- 3. Scan each knob (Y1 Y10).

Summary:

100% of the machines have emittance growth < 0.5 nm.

It is possible to squeeze in the budget for static errors down to < 1 nm or even 0.5 nm!

Tuning performance

Performance of the knobs when the RF alignment is not perfect (accuracy > 3.5 μm)

The budget is not respected for > \sim 7 µm

All the machines respect the budget for $up to 25 \mu m$.

- With a set of emittance tuning knobs it is possible to reduce emittance growth down to < 0.5 nm and consequently increase the luminosity.
- Emittance tuning knobs provide additional margin for the emittance budget.
- Such a set of knobs can assist when the RF alignment is not perfect.

Thank you for your attention!

Back-up

Macroparticle model of the beam

Beam emittance as a function of the number of slices and macroparticles.

Application range of the emittance simplification

Emittance evaluated after the RF alignment

works well

CERN

Optimal knob example Knob Y6

Principal directions

- To simplify the analysis I limit the number of principal directions, skipping those that do not contribute to the score.
- In the knobs constructions, 70 principal directions were used instead of 110.

home.cern