# Present status and plan on E-driven positron source for ILC

Y. Enomoto On behalf of KEK iCASA positron group



This work was supported by [MEXT Development of key element technologies to improve the performance of future accelerators Program] Japan Grant Number JPMXP1423812204.

### Contents

- Progress and status of the electron driven positron source for ILC
- Introduction to following talks
  - Design of the ILC electron-driven positron source and utilization of black-box optimization
  - Development of E-driven positron target
  - APS cavity design for ILC E-driven positron capture linac

# **Comparison of positron sources**

|                      | SKEKB         | ILC                    |
|----------------------|---------------|------------------------|
| e- energy            | 3.2 GeV       | 3 GeV                  |
| e- charge/bunch      | 10 nC         | 3.7 nC                 |
| Repetition           | 50 (25) Hz    | 5 Hz                   |
| Num. bunches         | 2             | 1320 =<br>(33+33) x 20 |
| Total charge / s     | 1000 (500) nC | 24667 nC               |
| Beam power on target | 3.2           | 74                     |
| yield                | 0.4           | 1.3                    |



#### Progress and status of the electron driven positron source for ILC



### Prototype to be built by JFY2027

- Project started Sep. 2022
- Grant from MEXT during JFY2023 and JFY 2027
- Build prototype in KEK
- Prepare 3D model, drawings, EDR



# 5 years-plan(as of 2024/3/28)



# What we did in JFY2023



### What we plan to do in JFY2024



# **Rotating Target - concept**



# Rotating target - Rotation test with dummy disk



Cooling Water is flowing Rotation speed is slower than design value

### Rotating target Vacuum test w target





No significant pressure rise during rotation Differential pumping works as designed



# Rotating target - Bonding test of W-Cu

- W-Cu bonding is one of a challenge
  - Very different properties, melting point, thermal expansion...
- Bonding test by Φ40 and Φ100 W rings
  - ο Final disk size is Φ500
- Tested boding method
  - o SPS(Toho)
    - Not good result till now
  - HIP(MTC)
    - Ongoing
  - Pressed fit with Li-Nitrogen (KEK)
    - Use this method for 1<sup>st</sup> prototype(Φ500)
    - Detail thermo-mechanical simulation to optimize interference and disk size











# FC - concept

- Basic design and concept are the same as ones used in the previous project, SLC and SuperKEKB
- Engineering design to satisfy requirement, especially cooling mechanism is important
  - Simulation using CST
    - Method was established and validated through the design of FC for SuperKEKB
    - Cooling water path design
    - Heat resistant materials
      - CuCr (SH-1)
- High power pulsed power supply
  - Energy recovery type might be necessary to satisfy requirements
    - Design JFY2024
    - Prototype JFY2025 and 2026

|                         | SKEKB | ILC           |
|-------------------------|-------|---------------|
| voltage (kV)            | 20    | 20            |
| current (kA)            | 12    | 35            |
| repetition (Hz)         | 50    | 100<br>(300)  |
| Pulse width (us)        | 6     | 11<br>(5-1-5) |
| Aperture (mm), diameter | 7     | 12            |
| Peak magnetic field (T) | 3.5   | 5             |
| Peak power (MW)         | 240   | 700           |
| Average power (kW)      | 12    | 128           |
| Ohmic loss (kW)         | 0.8   | 9             |

#### ILC ~ 10 x SuperKEKB in power



### FC – thermal simulation











### Acc. Structure - concept

#### **Challenges**

- Beam loading compensation
  - High beam current : > 0.6A
  - Multi bunch operation
- Powerful cooling system is required.
  - Very high heat load due to electromagnetic shower from the target
- Remote beam flange connection
  - High activation by shower from the target and the connection point is surrounded by solenoid coils

#### **Design Policy**

- High group velocity
- Large coupling β
- Water channel in the

APS cavity with a bi-periodic structure that operates in the  $\pi/2$  mode, which maximizes the group velocity.



### Acc. Structure - RF design

RF design finished using CST and Superfish by M. Fukuda



Coupling cell 2c: 206.3872

| Prameters                               | value | Prameters                         | value          |
|-----------------------------------------|-------|-----------------------------------|----------------|
| Resonant frequency (11 $\pi$ /21) [MHz] | 1300  | Q0                                | 22806          |
| Eacc [MV/m] (*1)                        | 6.5   | Qext                              | 4513           |
| Vacc [MV] (*1)                          | 8.2   | QL                                | 3801           |
| Ez max [MV/m] (*1)                      | 13.6  | Coupling β                        | 5.05           |
| Rsh [MOhm/m]                            | 35.0  | RF loss [1/W]                     | 0.25           |
| Transit-time factor (T)                 | 0.78  | RF loss (ave)[W] (*1) (*2)        | 625            |
| Effective Rsh [MOhm/m] (Rsh*T*T)        | 21.3  | Kilpatrick limit [MV/m] @ 1300MHz | 32             |
| Cavity length [m]                       | 1.268 | Max. Surface E-field [MV/m] (*1)  | 20             |
| Filling time [us]                       | 1     |                                   | 0.6 kilpatrick |
| <u> </u>                                |       | (*1) RF input power: 10MW (peak)  | 19             |

(\*2) Pulse width 2.5us, Rep.Rate 100Hz

# Acc. Structure - cooling design

 CFD simulation using ANSYS





### Acc. Structure - manufacturing process



# Acc. Structure - prototyping



- 3D model is ready by A. Enomoto
- 2D drawings are 70% ready by M. Sato
- Material (C1011) has delivered
- Machining and hot press bonding test started



# Simulation flow of positron source



# **PIC simulation example**



# Summary

- Prototype development of e-driven positron source for ILC is in progress
- Please focus on the following talks

| Speaker      | Торіс               | title                                                                                       |
|--------------|---------------------|---------------------------------------------------------------------------------------------|
| S. Kuroguchi | particle simulation | Design of the ILC electron-driven positron source and utilization of black-box optimization |
| Y. Morikawa  | Target              | Development of E-driven positron target                                                     |
| M. Fukuda    | Acc. Structure      | APS cavity design for ILC E-driven positron capture linac                                   |