

中国科学技术大学

Ailin Zhang, Xin Xu, Guoxi

Pei, Qing Luo, Haiping Peng

9th July

The 2024 International Workshop on Future Linear Colliders

I. The injectors of STCF

II. The positron source of STCF

III. Thermal research on target

The Super Tau-Charm Facility in China STRE

Parameter	Value
Perimeter/m	600~800
Optimized beam energy/GeV	2
Energy/GeV	1-3.5
Current/A	1.5
Emittance $(\epsilon_{\rm x}/\epsilon_{\rm y})$ /nm·rad	5/0.05
$m{eta}ig(m{eta}_{\mathbf{x}}^*/m{eta}_{\mathbf{y}}^*ig)$ /mm	90/0.9
Crossing Angle 2θ/mrad	60
Frequency shift ξy	0.06
Hourglass	0.8
Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	≥0.5

The off-axis injection of STCF

Parameter	Off-axis
	injection
Bunch charge(e/e ⁺)	1.5nC/50 Hz
Beam energy(e/e ⁺)	1-3.5GeV
Emittance(@2GeV)	≤6 nm•rad
e beam for e ⁺ (energy)	1.5GeV
e beam for e⁺(charge)	10 nC/50 Hz

The Swap-out injection of STCF

Parameter	Swap-out	
	injection	
Bunch charge(e/e ⁺)	8.5nC/30 Hz	
Beam energy(e/e ⁺)	1-3.5GeV	
Emittance(@2GeV)	≤30 nm∙rad	
e beam for e⁺(energy)	2.5GeV	
e beam for e ⁺ (charge)	10 nC/100 Hz	

I. The injector of STCF

II. The positron source of STCF

III. Thermal research on target

The positron production system

Parameter	Value		
Electron bunch	10 nC		
Electron energy	2.5 GeV		
Rep. rate	100 Hz		
Beam diameter	0.8 mm		
Magnetic field	5 \ 0.4		
Target thickness	13 mm		
Target material	Tungsten		
e ⁺ yield	0.25		

de_energy v.s. depth

0.01

positron yield

electron beam targeting

- 1. The energy dissipation of the target electron beam has a relatively small impact on the electron yield and energy angle distribution
- 2. 2. Eccentricity of electron beam targeting needs to be within 0.3mm

Capture efficiency	rms, ϵ_x $cm \cdot mrad$	rms, ϵ_y cm \cdot mrad	$\frac{rms(\Delta kE)}{kE}$	$rms(\Delta \varphi)$	< kE > Mev
17.9%	393.40	394.07	0.25	****	43.7462

57

-80

-100 -

-140 --160 -

-180-

-180 -160 -140 -120 -100 -80 -60 -40 -20

ò

 ϕ_2

20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

phase

1750

1700

1650

-180-160-140-120-100 -80 -60 -40 -20

Design of 1 GeV positron beam-line STRE

I. The injector of STCF

II. The positron source of STCF

III. Thermal research on target

Recrystallization of tungsten target

Melting point of tungsten 3410°C.

Recrystallization of tungsten 900 °C

900 °C

Polycrystalline tungsten

Design of oscillating moving targets STRE

2.5 GeV/100Hz/10nC

Thanks for your attention !