Development of ILC e-driven positron target

OYu Morikawa(KEK)

1. Comparison of positron production targets
A) Past to future positron target
B) Motivation for rotating target
2. Design and R\&D status
3. Development in this fiscal year
4. Summary and outlook

Comparison of e+ Targets

Heat Load on ILC positron target(e-driven)

Drive Electron Beam for positron production	
Energy (GeV)	3
Repetition Rate (Hz) (Pulse clock (Hz))	5
(300)	
micro pulse / pulse	20
Charge/micro pulse (nC)	244
Pulse length(msec)	63
RMS Beam Size (mm)	2
Beam Power(kW)	74

\checkmark Total Heat Load on target is 18.8 kW
\checkmark Peak Energy Deposition Density per micro pulse is $35.6 \mathrm{~J} / \mathrm{g}$, It corresponds to temperature increase of 258 K .

Motivation for Rotating target

Simulation Results		
	SKEKB	ILC e-driven
Primary electron energy(e) [GeV]	3.2	3
e^{-}Beam power [kW]	3	74
e^{-}Beam size on target [σ - mm]	0.4	2
Target material	W	W (or W alloy)
Target thickness	$4 \mathrm{X}_{0}$-(14mm)	$4.5 \mathrm{X}_{0}$-(15.7mm)
Power deposition on target [kW]	0.5	18.8
PEDD [J/g]	27.5	35.6
f Max temp of $\overline{\mathrm{Cu}}$ (alloy) $\overline{[} \overline{\mathrm{C}} \overline{\mathrm{C}}]$	140	130
Max temp of W $\left[{ }^{\circ} \mathrm{C}\right]$	360	420
- Max equiv. stress at W / Cu junction [MPa]	500 (@Edge)	150
1-Maxequiv. stress at W [MPal	500 (@Edge	
Num. of stress cycle per year	9×10 150	$\begin{aligned} & <1.8 \times 10^{7} \\ & 110 \\ & \hline \end{aligned}$

ILC - Equivalent stress

\checkmark Large disk ($\phi 500 \mathrm{~mm}$) and rotation reduce heat flux, max temp and stress are equiv. to SKEKB.
\checkmark Compared to SKEKB, both the num of stress loading and stress amplitude are smaller. It is advantageous in terms of material fatigue.

1. Comparison of positron production targets 2. Design and R\&D status
A) Design and rotating mechanism
B) Prototype test
C) W/Cu junction test
D) Joint research with JLAB, NIFS
2. Development in this fiscal year
3. Summary and outlook

Design of positron target

Rotating Mechanism
【Vacuum performance design】
Conductance，Vacuum level simulated by Molflow

【Bearing－6214／POC3】
－Fluorine－based vacuum grease
\Rightarrow Radiation－resistant vacuum grease．
－Both inner and outer rings were shrink－fitted．

Prototype Test

- Confirmed performance as designed.

Vacuum performance

Candidate methods of W/Cu Alloy junction

	Brazing	EB weld	HIP	SPS	Interference fit (cold fit)	Change Cu to Mo	W-alloy Monolithic
Junction Principle	Anchor	Weld	Anchor Diffusion	Anchor Diffusion	Interference pressure	- Diffusion?	-
Process Temp ${ }^{\circ} \mathrm{C}$	800~1000	Partially melt	900~1000	900~1000	-200~200	~2000	-
Thermal Strain	Whole	Welding path	Whole	Whole	Interference part	Whole	None
Recrystallization Embrittlement	No	Yes	No	No	No	Yes	No
Note		-Shallow melt depth	- Plating	Buffer layer	- Less contact stress - Contact resistance	- Less thermal strain - High temp process ?	- No thermal strain - Material availability

2024/07/10, LCWS2024, Y.Morikwa

Results of Tensile Test

HIP(W/Plating Cu/Cu alloy(NC50))

- SPS junction strength is low. Stroke(mm)
- HIP(W/C1020) has better junction strength.
- HIP(W/Plating Cu/Cu alloy(NC50)) samples were made and under preparation for test.

We made 2 samples but 1 was broken during machining due to thermal strain.

ACT2 - heat load test

Joint research with National Institute for Fusion Science (NIFS) from 2023~

-Withstands temperature rise and fall up to $1100^{\circ} \mathrm{C} \cdot \mathrm{W}$-ring exits during cooling after reaching $1500^{\circ} \mathrm{C}$

CFD simulation and PIV test

Joint research with JLAB (Silviu-san) from 2023~

- CFD simulation was done by J-Lab, and evaluated max temp, heat transfer coefficient(HTC), etc. This simulation shows max temp is $\sim 350^{\circ} \mathrm{C}$. This value is lower than our previous thermal analysis which use conservative HTC.
- Particle image velocimetry(PIV) test to validate the simulation and get deeper understanding. e^{-} 2024/07/10, LCWS2024, Y.Morikwa

1. Comparison of positron production targets
2. Design and R\&D status
A) Design and rotating mechanism
B) Prototype test
C) W/Cu junction test
D) Joint research with JLAB, NIFS

3. Development in this fiscal year

4. Summary and outlook

$\phi 500 \mathrm{~mm}$ disk
($\phi 460 \mathrm{~mm}$ heat sink in machining)

Water supply facility for positron test bench

Manufacturing of $\Phi 500 \mathrm{~mm}$ disk

- High-temperature process is only EB welding between copper alloys (NC50).
- W-ring is set by interference fit.
- Manufacturing will be completed in this September.

Structural analysis

Contact pressure at W/Cu

Tungsten inner diameter (cm)

- With 500um tightening allowance of 500um, contact pressure will be ${ }^{\sim} 20 \mathrm{MPa}$.
- Under pressure of 20 MPa , temperature rise due to contact thermal resistance can be estimated ${ }^{\sim} 10^{\circ} \mathrm{C}$ by using empirical formula(Tachibana's equation, etc).

1. Comparison of particle production targets
2. Current Design and R\&D status
A) Current design
B) Water cooled UHV compatible rotating mechanism
C) W-Cu connection
3. Development in this fiscal year
A) $\$ 500 \mathrm{~mm}$ target disk
B) W-Cu connection
4. Summary and outlook

Rotating target in Japan

	${ }^{+}$	μ	Hadrons	RIBF
Institute	ILC (e-driven)	J-PARC	J-PARC	RIKEN
Primary particle	e^{-}	p	p	$\mathrm{C} \sim$
Target material	W	C	Au or W	Be, W
Repetition [Hz]	100 / 300	25	0.19	CW (1puA)
Beam Power [kW]	74	1000	150	82
Deposited power [kW]	18.8	3.1	11	18
PEDD [J/g]	33.6	20	Slow extraction	CW
Status	Prototype	In operating	Prototype	In operating
Cooling	Water	Radiation	He	Water
Remarks	In vacuum(e-6 Pa)	In vacuum(e-6 Pa)	In Hegas	In vacuum, large space

【ILC e-driven】

Rotation/Vacuum/Water cooling /Space saving/high precision \Rightarrow Our target have achieved various technical elements.

Summary \& Outlook

\checkmark Water cooled UHV compatible rotating mechanism

- Differential pumping by narrow gaps.
- The results of the prototype test are satisfactory.

\checkmark W-Cu Disk

- Tested junction methods : HIP, SPS, Interference fit.
- The ACT2 test for cold fit sample shows the potential for enough cooling performance, while also highlighting the importance of tightening management.
\checkmark Manufacturing of $\boldsymbol{\phi} 500 \mathrm{~mm}$ target
- In progress. Scheduled for completion in September.
- Heat load test will be conducted.

Our target will become versatile target suitable for various projects!

Backup Slide

Comparison of Particle Production Targets

No．	Drive Particle	Production Particle	Labolatory （Project）	Target Material		Primary Beam Power（kW）	Deposition at Main Absorber		Remarks
				Material	Dimensions		Ratio of deposit	Deposit Power（kW）	
1	Electron	Slow Positron	KEK	Ta	t4mm	0.6	0.26	0.16	水冷
2	Electron	Positron	SLAC	W74－Re26	t20．6mm	44	0.18	8.13	トロール＋水冷
3	Electron	Positron	KEKB	W	t14mm	4	0.14	0.52	水冷
$\begin{array}{\|r\|} \hline 4 \\ \hline-5 \\ \hline-8 \mid \\ \hline \end{array}$	Electron Electron	Positron Positron	SKEKB ILC	W W75－Re25	$\begin{aligned} & \mathrm{t} 14 \mathrm{~mm} \\ & \mathrm{t} 16 \mathrm{~mm} \\ & \hline \end{aligned}$	4	－ 0.14	$\begin{array}{r} 0.51 \\ 18.95 \\ \hline-0 \end{array}$	
6	Proton	Muon	J－PARC	C	$\phi 70 \mathrm{~mm} \times \mathrm{t} 20 \mathrm{~mm}$	1000	0.00	2.92	回転＋輻射冷却
7	Proton	Neutron	J－PARC	Hg	$\sim L 2000 \mathrm{~mm}$	1000	0.39	386.67	流体
8	Proton	Neutrino	J－PARC	C	$\phi 26 \mathrm{~mm} \times \mathrm{L} 909 \mathrm{~mm}$	750	0.02	13.50	ガス冷却
9	Proton	Hadrons	J－PARC	Au	t11mm $\times 6 \mathrm{set}$	80	0.11	8.98	水冷－遅い取り出し（～2sec）
10	Proton	Neutron	SNS at USA	Hg	$\sim L 2000 \mathrm{~mm}$	1400	0.34	478.80	流体
11	Proton	Neutron	ESS	W	$\sim L 1200 \mathrm{~mm}$	5000	0.46	2297.50	回転＋ガス冷却
12	～U238	Rare Isotopes	RIKEN（RIBF）	C，Be，Ta‥	Be－t 5．4mm，etc．${ }^{\text {c }}$	83	0.27	22.00	回転＋水冷
13	（016～U238）	Rare Isotopes	FRIB	C	t0．15mm $\times 2$－9disk	400	0.17	68.74	回転＋輻射冷却

－In positron targets，

deposited heat at target is around 20\％of the driving beam power．

$\Rightarrow 10 \mathrm{kWビームで~2kW}, \mathrm{100kWビームで~20kW}$ 程度の熱量を標的で受ける。
－Trend is to start using rotating mechanism when the deposited heat reaches around 10 kW ． \Rightarrow 更には～100kW以上から流体標的や巨大回転標的（ESS～${ }^{(2.6 m}$ ）が登場する。

SKEKB thermal analysis

Range of The Fluid Types Products

Product name	MORESCO-HIRAD RP-42	MORESCO-HIRAD RP-42R	MORESCO-HIRAD RP-42S
Appearance	Colorless Transparent	Light yellow Transparent	Colorless transparent
Density $15^{\circ} \mathrm{C} \mathrm{g} / \mathrm{cm}^{3}$	1.166	0.989	1.040
Viscosity $40^{\circ} \mathrm{C} \mathrm{mm}{ }^{2} / \mathrm{S}$	128.6	279.9	42.0
Viscosity index	-111	63	52
Pour point ${ }^{\circ} \mathrm{C}$	$0.0(* 1)$	-17.5	-22.5
Flash point ${ }^{\circ} \mathrm{C}$	268	296	250
Total Acid number $\mathrm{mgKOH} / \mathrm{g}$	0.00	0.00	0.00
Radiation-resistance Upper limit $/$ MGy ($\left.{ }^{*} 2\right)$	30	15	15
Types of packing ($\left.{ }^{*} 3\right)$		500 ml bottle	

Note: (*1) Although its pour point is $\mathbf{2 . 5}$ degree Celsius, it is $\mathbf{1 0}$ degree Celsius that the lower limit of our quality guarantee temperature on this product.
(*2) In a room temperature and atmospheric environment
(*3) We are able to deliver more big packages of quantities which meet your needs. however, an additional lead time will be required for their realization.

- Some countries ban importing of these lubricants or require procedures such as submission of application for approval and/or quantity report. Hence, there may be some cases where exporting of these lubricants for replenishment may not be possible. The importer will be subject to penalties if these lubricants are imported against legal restrictions in the importing country. Please contact me (hayashi@moresco.co.jp) in advance if you intend to export these lubricants and/or parts containing the lubricants.

【 Fig 1. The effect of a gamma ray for the viscosity 】
Fluids with a small rate in viscosity increase are excellent.

Spark Plasma Sintering(SPS)

