

Positron source for CEPC

Xiaoping Li, Cai Meng, Jingru Zhang, Zhe Duan, Jindong Liu, Jie Gao

中國科學院為能物記編完所 Institute of High Energy Physics Chinese Academy of Sciences

环形正负电子对撞机 Circular Electron Positron Collider

- Parameters and layout of the CEPC Linac
- Positron source for CEPC
 - Electron beam for positron production
 - Positron generation and Pre-acceleration
 - R&D of key components for positron source
- Other sources related research activities
- Summary

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source
- Other sources related research activities
- Summary

Baseline design of the CEPC Linac

- A **30GeV** room temperature Linac
- A combination of S-Band (2860MHz) and C-Band (5720MHz)
- The Linac tunnel length is **1.8km**

Parameter	Symbol	Unit	Baseline
Energy	E_{e}/E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		nC	1.5 (3)
Energy spread	$\sigma_{_E}$		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5

Layout of the CEPC Linac

- FAS+PSPAS+SAS: S-Band
- **TAS:** C-Band (Higher gradient \rightarrow Shorter linac tunnel length)

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source
- Other sources related research activities
- Summary

Electron beam for positron production

Electron source and bunching system (Baseline)

– Electron Gun

- A traditional thermionic triode gun
- 3nC for electron injection
- 11nC for positron generation

- Bunching

- Two SHBs (158.89MHz/476.67MHz)
- Buncher(2860MHz)
- Accelerating structure (2860MHz)
- Energy: 50MeV
- Normalized Rms Emittance: 80mm-mrad
- Transmission
 - 90%
- Verified at BEPCII and HEPS Linac

LCWS2024, July 8-11, Tokyo, JAPAN

Positron source for CEPC

Electron beam for positron production

■ Acceleration: 50MeV→4GeV

- 18+3(redundancy) S-band klystron
- 1 klystron \rightarrow 4 accelerating structures
- Gradient: 22MV/m

Simulation results

- Energy: 4GeV
- Bunch charge: 10nC
- Energy spread: 0.63%

10nC@4GeV electron beam for positron production

LCWS2024, July 8-11, Tokyo, JAPAN

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source
- Other sources related research activities
- Summary

Positron source for CEPC

Positron source and Pre-acceleration

Positron source

- Target (Conventional)
 - Electron beam: 10nC@4GeV
 - Tungsten@15 mm
 - Beam size: 0.5 mm

AMD (Adiabatic Matching Device)

- A flux concentrator
- Magnetic field: $(5.5T \rightarrow 0T) + 0.5T$ Solenoid

Capture & Pre-accelerating section

- 1 klystron \rightarrow 2 accelerating structures
 - Larger aperture S-band accelerating structure with aperture is 25 mm, gradient is 22 MV/m and length is 2 m

4 GeV Electron

Chicane @ 200MeV

- Wasted electron separation
- Exit: ~5.5nC, Nor. Emittance: 2370mm-mrad

LCWS2024, July 8-11, Tokyo, JAPAN

S (m

Positron source for CEPC

Positron source and Pre-acceleration

Acceleration: 200MeV→1.1GeV

- 8+1(redundancy) S-band klystron
- 1 klystron \rightarrow 2 accelerating structures
 - 10 Larger aperture S-band accelerating structure@22MV/m
 - 8 normal S-band accelerating structure@27MV/m

Transverse focusing

 Triplet quadrupoles are outside of each accelerating structure

Simulation results

- Energy: 1.1GeV
- Energy spread: 0.4%
- Bunch charge: ~4.5nC
- Normalized rms Emittance: 2500mm-mrad

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source
- Other sources related research activities

Summary

R&D of key components for positron source

A flux concentrator prototype has been successfully developed

- Manufactured under a cooperation MOU with KEK
- A trumpet-shaped copper coils: 12 turns
- The inner diameters: 7 to 52 mm
- Coils distance: 0.2 mm
- Total length: 100 mm
- Peak current: 15A
- Max pulse magnetic field: >6T@15kA

R&D of key components for positron source

A new pulse modulator has been developed for FC

- All-solid-state switching components IGCT instead of hydrogen thyratron (BEPC II)
- Obtained a higher peak current without high-frequency ripples
- Will be used for BEPCII operation this September

R&D of key components for positron source

Test results of the FC

- A test bench has been built up for performance verification of the FC
- The test results of FC agreed well with the designed parameters
- A peak magnetic field of 6.2 T had been obtained inside the FC at a 15kA driving current
- Can meet the requirements of CEPC positron source baseline design

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other sources related research activities

Summary

A thermionic triode gun

- A prototype of electron gun and its test platform had been built up
 - Used for domestic cathode-grid assembly R&D
 - The cathode emission capacity had been tested up to 12A@150kV
 - The emission capacity does not decrease within 7000 hours operation

A polarized electron source R&D plan

- Based on a 500kV photocathode dc-gun has been built up at PAPS, Huairou, Beijing
 - Superlattice photocathodes R&D collaborating with a domestic company (Acken, Suzhou)
 - Research on the polarization manipulation and measurement (Collaborate with JGU, Mainz)
 - Two-stage experiments will be considered in near future (200kV/400kV)

A L-Band photocathode RF Gun

- A L-Band photocayhode RF Gun has been developed (Under processing now)
- Potential for generating high bunch charge electron beam (≥10nC)
 - An alternative solution for the thermionic gun of CEPC Linac
 - Avoiding additional frequency introduced by SHBs which lead to a complex timing system for CEPC
- Developed for PWFA experiment research on BEPCII (A project has been approved by CAS)

Parameters	Value	Unit
Frequency	1299.48	MHz
Cell	1.55	cell
Input power	6.5	MW
Q factor	24291	-
Gradient at cathode	60	MV/m
RF pulse length	10	μs

Other sources related research activities

Polarized positron beam generation

- Preliminary consideration on a Compton Ring and a Stacking Ring for the generation of polarized e+ beams~1×10¹²e+/second
 - A potential solution to generate polarized positrons in CEPC
 - Up to now, just a conceptual consideration (requires a lot of further simulation works in future)
- Using the self-polarization to generate polarized e+ beams in DR
 - Need a higher energy in DR around 2GeV and a strong dipole strength
 - Current research shows that extracted beam polarization @ 10min ~ 44%

LCWS2024, July 8-11, Tokyo, JAPAN

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source
- Other sources related research activities
- Summary

- The CEPC Linac is a 30 GeV room temperature S-band and C-Band combined linear accelerator working at 100Hz.
- Positron source for CEPC adopting a conventional scheme.
- A flux concentrator prototype and its pulse modulator has been developed and tested.
- Other sources related research activities in IHEP are mentioned.

中國 拍 著 院 為 能 物 II M 完 所 Institute of High Energy Physics Chinese Academy of Sciences

Thank you for your attention!

LCWS2024, July 8-11, Tokyo, JAPAN

CEPC as a Higgs (ttbar, H, W, Z) Factory

- Linac, 30GeV, 1.8km
- Full energy Booster, 100km
- Collider, 100 km
- Transport lines
- Linac design
 - Meet requirements
 - High availability
 - Reserve upgrade potential

$$L_{\rm int} = \int_0^T L(t) dt = \langle L \rangle \cdot T_s \cdot \eta$$

The maximum energy of booster is 180GeV and circumference is 100 km

- Large circumference & Low injection energy → Low magnetic field
 - design difficulty in magnet (*field*) and power supply (*stability*)
- Large extraction energy \rightarrow Large field range
 - design difficulty in magnet (*excitation efficiency*) and power supply (*power*)
- Increasing the energy of the Linac is the easiest way: 30 GeV

Wen Kang Session M2-2: #1 Magnet		Magnat	Low injection energy		energy	Max. Extraction energy	Cest
		Magnet	10GeV	20GeV	30GeV	180GeV	Cost
	СТ	Air-core coil	Yes	Yes	Yes	No	Very high
iron-corn	orient	ed silicon steel sheet	No	Yes	Yes	Yes	high
magnet	Non-o	riented silicon steel sheet	No	No	Yes	Yes	low

effect of residual magnetism

Simulation results (including Wakefield & CSR)

Positron damping/polarizing ring

- Using the self-polarization to generate polarized e+ beams
 - For Resonant depolarization (very promising)
 - extracted beam polarization @ 10min ~ 44%
 - No physics dead time, improved availability & int. luminosity
 - for polarized colliding beams (under study)
 - Higher energy and/or asymmetric wigglers
 - More bunches

DR V4.0	unpolarized e+	polarized e+	
Energy (Gev)	1.983		
Circumference (m)	144.2		
Number of trains	2(4)		
Number of bunches/trian	1(2	2)	
Total current (mA)	12.4		
Dipole strength $B_0(T)$	1.92		
U ₀ (kev/turn)	397.9		
Damping time $x/y/z$ (ms)	4.8/4.8/2.4		
Momentum compaction	0.0078		
Storage time	20 ms 10 min		
δ ₀ (%)	0.0917		
ε_0 (mm.mrad)	132		
injection σ_{z} (mm)	6		
Extract σ_{z} (mm)	6.7	6.6	
ε_{ini} (mm.mrad)	2500		
$\varepsilon_{\text{ext x/v}}$ (mm.mrad)	133/13	132/13	
$\delta_{\rm ini}/\delta_{\rm ext}$ (%)	0.18 /0.092		
RF acceptance (%)	1.85		
Longitudinal tune	0.025		

Approac	hes	Self-polarization in the collider	Injection of polarized beams
Hardwa Polarized electron re gun		None	Yes
	Asymmetric wigglers	In the colliders	In the e+ damping ring or None
Polarizat	ion level	5% ~ 10%	> 70% for e-, > 20% e+
Dead tir	ne for physics	Initial 1~2 hours in each fill	None
Frequent	cy of RD ments	Every ~10 min per beam	More frequent for e- beam
RD on co	olliding beams	None	Possible at lower bunch charge

基于BEPCII, 打造正电子加速、级联加速独特研究平台

针对正电子加速、尾场级联加 速及外注入级联等关键科学挑 战的研究需求,基于BEPCII 高能正负电子束流,结合大电 量电子驱动器,建设<mark>世界独</mark>有 的束流驱动尾场加速研究平台

Hall 10: 35m×14m

激光等离子加速器 + 储存环 test facility @ 河南

