

July 8–11, 2024 The University of Tokyo, Japan

Work supported by INFN CSN5 experiment SAMARA and INFN CSN1 experiments SRF and RD_FCC

This project has received funding from the European Union's Horizon-INFRA-2023-TECH-01 under GA No 101131435 – iSAS and from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730 – IFAST

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

Save energy

Reduce resources consumption and waste production

Clean and green procedures

CW82024

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

Nb₃Sn motivation

Energy saving is mandatory for the **next generation accelerators**

Cryogenics is one of the **larger energy cost** in modern SRF accelerators

Move from bulk Nb @2K to Nb₃Sn @4.5 K reduces cryogenic power by a factor of 3

LCWS2024

Nb₃Sn state of the art

Vapor Tin Diffusion

Cornell, Fermilab, JLab, KEK

10¹¹

 $\sigma^{\circ} 10^{10}$

10⁹

0

Nb_zSn 4.4

Nb bulk 2 K

5

20

Technology limitation:

Reproducibility

LCWS2024

B_{pk} [mT] S. Posen, SRF 2019 proceedings (elaborated)

Eacc

Nb bulk 4.4 K (Q ~ 2 * 10⁸)

10

40

► **Nb as Substrate** (expensive, chemistry, no interlayer possible)

Nb₃Sn 2 K

15

60

1.3 GHz

4.4 K

2.0 K

25

100

20

80

A different approach: Nb₃Sn on Cu

Cu substrate as several advantages:

- Cheaper than Nb
- Higher thermal conductivity
- Higher mechanical stability
- PVD technology (Nb on Cu) already used for LEP, LHC, HIE-ISOLDE @ CERN ALPI @ INFN LNL

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- Complicated Phase Diagram
- Low melting point substrate
- Interface diffusion
- Coating Parameters
- Substrate preparation
- Target Production/Magnetron Design
- ► Trapped Flux
- ► Tuning

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- Complicated Phase Diagram
- Low melting point substrate
- Interface diffusion
- Coating Parameters
- SRF cavities R&D for FCC-ee

INFN Accelerators European Strategy Program

IFAST

- Substrate preparation
 Target Production/Magnetron Design
 - Trapped Flux

Tuning

Nb₃Sn on Cu TRL evolution @LNL

A step forward in TRL

Focus on:

- minimizing trapped flux
- increasing coating mechanical strength (to allow cavity tunability)

I.FAST WP9 Collaboration

LCWS2024

INFN

Nb₃Sn on Cu R&D activity covers all cavity production chain

INFN Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

cristian.pira@Inl.infn.it

Technologies in focus at INFN LNL

LCWS2024 Piture Liner Collider

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

Surface Polishing PEP

cristian.pira@Inl.infn.it

Surface Polishing

L. Vega Cid, TTC meeting 2022 (elaborated)

Cu substrate plays a fundamental role in SRF performances

Roughness and defects reduction by **surface treatments are mandatory** for a good and uniform SRF coating

Cavity polishing requires large amount of acids. In particular Nb requires HF (extremely dangerous and poisoning process)

Plasma Electrolytic Polishing PEP Mechanism

INFN Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

LCWS2024

Plasma Electrolytic Polishing PEP Results

1x 🗓 Nb 3x 🗒 Cu Solution Patents by INFN

Planar samples

Additive Manufacturing

PEP 30 min Ra= 1.5 μm

Nb QPR polishing optimizaztion on-going

HZB

Full Cu QPR ready for coating

QPR Samples

6 GHz Cu cavity

No internal cathode!

70 μm removed in 10 minutes 30 A (100 cm2 → 1.3 GHz ~ 300 A) cristian.pira@lnl.infn.it

6.5 μm removed

Ra= 13 μm

150 μ m removed in ~ 5 h

150 μ m removed in ~ 40 min

100

50 -

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

PEP Path to Final Prototype

Philosophy: scale 6 GHz set-up to 1.3 GHz converting LNL QWR polishing system

Priority: test RF performances after PEP

- **1. Simpler set-up: cavity fully immersed**
- 2. Alternative set-up to Reduce Process Power
 - Reduce Treated Area (rotating cavity)
 - Optimizing Process Parameters
 (Temperature, Voltage, ...)

6 GHz - 30 L

1.3 GHz - 300 L

QWR Implant @LNL cristian.pira@Inl.infn.it

| Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

PEP Path to Final Prototype

Philosophy: scale 6 GHz set-up to 1.3 GHz converting LNL QWR polishing system

Priority: test RF performances after PEP

- **1. Simpler set-up: cavity fully immersed**
- 2. Alternative set-up to Reduce Process Power
 - Reduce Treated Area (rotating cavity)
 - Optimizing Process Parameters
 (Temperature, Voltage, ...)

6 GHz - 30 L

1.3 GHz - 300 L

2300 cm2 tube treated by PEP (150 A, cristian.pira@Inl.infn.it 17

Nb₃Sn on Cu Coatings

Long R&D phase on PVD Parameter Optimization

Optimized Coating Recipe

- Coating Parameters:
 - Pressure = 2*10⁻² mbar
 - Power = 16 W

LCWS2024

- T substrate ≥ 600 C
- Nb Thick Barrier Layer > 30 um

A thick Nb buffer layer accommodates the Nb₃Sn coating

Nb substrate can be used to validate Nb₃Sn Coating Performances

First Nb₃Sn RF Results (on a small Nb planar resonator)

Rs of 23 nΩ @ 4.5 K, 20 mT

LCWS2024

Quench >70 mT @ 4.5 K

- Nb₃Sn coating suffer flux trapping
- Cooldown procedure influence Rs

Equivalent to a Q of 9.10^9 @5 MV/m @4.5 K 5 times better than LHC \rightarrow FCC-ee compatible Room for improvement

Nb₃Sn Path to Final Prototype

- 1.3 GHz Vacuum system ready
- Magnetron source commissioned

Nb₃Sn on bulk Nb to validate coating performances (2025) on 1.3 GHz Elliptical Cavities (2025)

Develop Nb thick barrier/accommodation layer on 1.3 GHz Elliptical Cavities (2025) (proof of concept on 6 GHz cavities already done)

Nb₃Sn on Cu with thick Nb coating **V** on 1.3 GHz Elliptical Cavities (2026-2028)

In parallel:

Study on alternative buffer layer

Study on flux trapping
 Study on flux trapping

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

LCWS2024 Finter at loss Colleges

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

cristian.pira@Inl.infn.it

22

Conclusion

- PEP and Nb₃Sn films are possible game changer technologies for SRF accelerating cavities
- **Big steps forward** in the last two years with transition from planar to 3D samples
- Very promising results from first RF test
- Validation with 1.3 GHz cavities is necessary prior to evaluating the feasibility of implementing these technologies in real accelerators
- End of 2025 we expect to have the first tests available on 1.3 GHz cavities
- In 2028 optimized prototypes are expected

Work supported by INFN CSN5 experiment SAMARA and INFN CSN1 experiments SRF and RD_FCC This project has received funding from the European Union's Horizon-INFRA-2023-TECH-01 under GA No 101131435-15A and from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730–1,FA

Davide Eduard - Giovanni Ford

Marconato

Chyhyrynets

Cristian Pira

Roberta 🖉 Dorothea Caforio Fonnesu

Alessandro Salmaso

July 8–11, 2024 The University of Tokyo, Japan

Work supported by INFN CSN5 experiment SAMARA and INFN CSN1 experiments SRF and RD_FCC

This project has received funding from the European Union's Horizon-INFRA-2023-TECH-01 under GA No 101131435 – iSAS and from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730 – I.FAST

Backup Slides

Nb₃Sn motivation

Energy saving is mandatory for **FCC-ee** and the **next generation accelerators**...

...**cryogenics** is one of the **larger energy cost** in modern SRF accelerators

Move from thin film Nb @4.5 K to Nb₃Sn @4.5 K Reduce $T_{op}/T_c \rightarrow Suppress R_{BCS} \rightarrow Increase Q$

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

Cavity Tunability

Nb₃Sn is extremally brittle

Eremeev, G. (2023). Tunability/robustness of Nb3Sn (No. FERMILAB-SLIDES-23-402-TD). Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States).

Strong performance degradation after room temperature tuning for 200 kHz

LCWS2024

Little change in the coated cavity performance after tuning up to 1400 kHz at cryogenic temperatures

► Vapor Tin Diffusion Nb₃Sn on Nb cavities can be tuned only at cryogenic T

An interlayer in Nb₃Sn on Cu coatings can be added to enhance film mechanical stability and tunability

Trapped Flux

A. Romanenko, A. Grassellino, O. Melnychuk, D. A. Sergatskov, J. Appl. Phys. 115, 184903 (2014)

LCWS2024

First ISAS Results:

- Nb₃Sn coating suffer flux trapping
- Cooldown procedure influence Rs

Nb₃Sn coatings: target production

Single target configuration easiest to scale onto elliptical geometry Nb₃Sn cylindrical targets are not commercially available

LNL Strategy for Nb₃Sn cylindrical targets production for 6 GHz cavities

Nb₃Sn **thickness** related to **dipping time**

Possible tin content modulation

INFN Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

The role of the thick Nb layer is to accommodate the Nb₃Sn lattice parameter ~

LCWS2024

ALD layer could be an alternative to explore

INFN Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

PEP is Efficient Comparision with EP and BCP

Nb, Magnification **1000x**; 100 µm Removal

Both micro and macro roughness is improved significantly

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

PEP is Efficient

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

LCWS2024

INFN

Comparison Copper treatments

Process / parameters	"SUBU5"	EP (3:2)	PEP in "SUBU5"
Solution composition	Sulfamic acid 5 g/l; NH ₄ -citrate 1 g/l Butanol 50 ml/l; H ₂ O ₂ 50 ml/l	85 % H ₃ PO ₄ 60 p. 99% n-Butanol 40p.	Sulfamic acid 5 g/l; NH ₄ -citrate 1 g/l Butanol 50 ml/l; H ₂ O ₂ 50 ml/l
Voltage	-	2-6 V	300 V
Current density	_	0,01 – 0,03 A/cm²	0,25-0,8 A/cm²
Power draw	-	0,06 – 0,18 W/cm ²	75 – 240 W/cm²
Removing rate	1,5 µm/min (70±2℃)	0,15-0,5 µm/min (25℃)	20-30 µm/min (80℃)

SRF System Baseline for FCC

In total: 366 CM, 1'464 cavities (4 cavities/CM, present assumption):

- ► 400 MHz single-cell (Nb/Cu): 28 CM, 112 cavities → 4.5 K (to be removed after Z)
- ▶ 400 MHz two-cell (Nb/Cu): 66 CM, 264 cavities \rightarrow 4.5 K
- ► 800 MHz five-cell (bulk Nb): 272 CM, 1'088 cavities → 2 K

Collider (ttbar2): 188 CM (264 cavities 400 MHz, 488 cavities 800 MHz)

Booster (ttbar2): 150 CM (600 cavities 800 MHz)

Performance of thin film 400 MHz are one of the main challenges of FCC SRF System

SRF System Baseline from Vittorio Parma, FCC week 2023

400 MHz requirements

FCC-ee requires higher cavities performances than LHC

Nb on Cu "baseline", Solid scheme with good margin for reliable operation Clear R&D paths identified (seamless copper cavities, HiPIMS coating, High Q0 bulk Nb cavities)

Franck Peauger, FCC week 2023

LHC cavities Q vs E_{acc} @4.5 K

Graph from Carlota Pereira Carlos, FCC week 2023

INFN Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K

SRF R&D @CERN for FCC

HiPIMS technology densifies the Nb coating and increases RF performances compared to DCMS

R&D @CERN also on cavity forming (hydroforming), polishing (EP), Cu oxide layer, Nb₃Sn by HiPIMS

LCWS2024

Nb₃Sn on Cu thin film SRF cavities for new generation LINACS operating at 4.5 K