Summary of the DR/BDS session of LCWS2024

2024/07/11, The university of Tokyo Toshiyuki OKUGI (KEK) Angeles Faus-Golfe (IJClab) Rogelio Tomas Garcia (CERN) Andrzej Wolski (The University of Liverpool)

Presentation List

	11:00	ATF2 status and operation 2023-2024	Alexander Aryshev 🕜
		380, Science building n.1	11:00 - 11:15
		Wakefield study at ATF2 beamline	Dr Yuki Abe 🕜
7/09		380, Science building n.1	11:15 - 11:30
		KEK ATF Linac and Damping Ring klystrons High-Power RF field phase and amplitude stability study Dr Konstantin Popov	
		Ultra-low Beta* experimental studies at ATF2 and future plans	Mr Andrii Pastushenko 🕜
		380, Science building n.1	11:45 - 12:00
	12:00	ILC C-BPMs status and plans	Laura Karina Pedraza Motavita 🕜
		380, Science building n.1	12:00 - 12:15

16:00	State of the art in low-emittance storage rings and CLIC DR design	Yannis Papaphilippou 🕜
	380, Science building n.1	16:00 - 16:15
	Present design of ILC DR	Kiyoshi Kubo <i>Ø</i>
	380, Science building n.1	16:15 - 16:30
	Present design of ILC BDS	Toshiyuki Okugi 🖉
	380, Science building n.1	16:30 - 16:45
	Status and plans of CLIC BDS	Enrico Manosperti
	380, Science building n.1	16:45 - 17:00
17:00	ATF2 incoherent Cherenkov radiation monitor status and plans	Kacper Lasocha <i>Ø</i>
	380, Science building n.1	17:00 - 17:15
	ATF2 BPMs status and plans	Alexey Lyapin 🖉
	280. Science huilding n 1	17·15 - 17·30

7/10

2 for CLIC design
2 for ILC design
6 for ATF study
1 for ILC beam instrumentation

2

State of the art in low-emittance storage rings and CLIC DR design

Yannis Papaphilippou (CERN)

- High-bunch brightness in all three dimensions
- Repetition rate and bunch structure
- Injection (Dynamic aperture) and extraction (emittance stability)

Emittance targets

Improving CLIC DR design

- New DR arc cell (longitudinally varying bends) and SC wigglers for circumference reduction (collective effects)
- **RF frequency choice** and **LLRF** technical development (power reduction)
- **Prototypes for stripline kicker + pulser** have been realized and tested.
- Prototypes for SC wiggler tests , varying permanent bending fields, have been realized and tested.

DR cavity for ultra-low R/Q of 14.3Ω

- Large aperture => low R/Q
- Long cell: $\sim \lambda$ => low transit time factor
- Low field on the cavity wall

ILC Damping Ring Design: Changes from TDR

Kiyoshi Kubo (KEK)

Horizontal normalized emittance

Bend	No intra-beam scattering	With intra-beam scattering ($\gamma \varepsilon_y = 20 \text{ nm}$)
3 m (TDR)	$\gamma \varepsilon_x = 5.74 \ \mu m$	$\gamma \varepsilon_x = 6.27 \ \mu m$
5 m	$\gamma \varepsilon_{\chi} = 3.14 \ \mu m$	$\gamma \varepsilon_x = 4.00 \ \mu m$
2.4 m+ 2.4 m	$\gamma \varepsilon_x = 3.27 \ \mu m$	$\gamma \varepsilon_x = 4.08 \mu \text{m}$

5

Present design of ILC BDS

Toshiyuki Okugi (KEK)

ILC BDS was designed to be operated very wide energy range with same geometry.

Ξ

 \times

ATF2 STATUS AND OPERATION 2023-2024

Alexander Aryshev (KEK)

- ATF upgrade strategy
- IPBSM new laser system
- ATF timing/RF system upgrade
- Magnet movers
- New FF magnets (QD0FF and QF1FF)
- Other upgrades

Konstantin Popov (KEK)

The High-Power RF phase drifts 14 degrees peak-to-peak within 72 hours, while the amplitude drifts 1.5 % peak-to-peak. The phase and amplitude drift in-phase.

2022

harge at:	2023	2024
ic End	~0.01	~0.005
	~0.01	~0.005

Wakefield study at ATF2 beamline

Yuki Abe (KEK)

Ultra low beta* experimental studies at ATF2 and future plans Andrii Pastushenko (CERN)

Octupoles

ATF2 incoherent Cherenkov diffraction radiation monitor status and plans Kacper Lasocha (CERN)

Summary of 2023 tests

Planned upgrade of ChDR setup

ATF2 Cavity BPM system: Progress with calibration pulse injection

Alexey Lyapin (RHUL)

Calibration pulse injection

- Cavity-quad offsets: reduce the useful dynamic range
- Regular calibrations required
- Wakefields (as a consequence of the offsets)

Cavity Beam Position Monitor for the ILC Main Linac: Status and Plans

Laura Karina Pedraza (IFIC)

Re-entrant cavity BPM

Methods employed to enhance the spatial resolution and meet the Main Linac requirements:

- The Saclay design is under evaluation to enhance BPM sensitivity and spatial resolution
- Simulation of the read-out system in MATLAB to asses the influence of all components on the overall system performance
- BIR-ME 3D method estimates the cBPM output signal with careful definition of the beam.

A preliminary plan is underway to develop a prototype integrating the SCQ and BPM assembly into a test cryostat.

Figure: Cryostat accommodating BPM and SC quadrupole