Summary of MDI/CFS Sessions

Alexander Valishev, <u>Roman Pöschl</u>, Karsten Büßer, Nobuhiro Tenamura, Tomoyuki Sanuki, John Osborne

LCWS 2024 – Tokyo (JP) – July 2024

CFS/MDI Sessions@LCWS 2024

- Three sessions, 12 talks grouped around four topics:
 - Site issues, planning and "Heavy Metal"
 - Tools for beam background and impact on detectors
 - Design of MDI regions
 - Real life experience
- Excellent talks
 - ... partially with illustrative animations
- Lively discussions
- All faults in this summary are mine

Extended from the access tunnel surrounding the DH.

Parallel to the BDS tunnel with several connections to it.

- Serves as a delivery route other than PM 8s.
- Equipment rooms can be located in the middle of connecting tunnels.

July 9th, 2024, LCWS2024, CF/MDI session

- access to BDS system
- CAD model

N. Terunuma

 New sub tunnel to render more convenient => Displace DR 100m from IP New system already implemented in

• N.B. has also consequences for arcs at the beginning of the main linac

"Big Magnet Crisis"

K. Büßer

Future Detector Magnets

Follow basically CMS-Example

- · Al-stabilised conductor
- Co-extrusion process

Industry has dropped the ball

- No facilities available with a proven track record
 - Not an interesting market for industry

R&D is slowly taking up again

- · CEPC is working together with Toly Electric
- First results look promising

Need to pick up the ball

 Cooperation between Labs and industry is crucial!

- No Magnet, no detector
- Serious problem, regular meetings since 2022
- Can HEP (CERN) provide the production?

New/other technologies?

Soldiering/beam welding

Cello Conductor

One of the first aluminum soldered conductor 1979 for a solenoid of 1.5 T (Ø = 1.6 m, length 4 m).

One year after Morpurgo magnet

CERN workshop- 12-14/09/2022

... and HTS

On or off-site? That's the question – Magnet Manufacturing

Y. Makida

This would be a major infrastructure needed at the earliest occasion next to the IP

Roman Pöschl

ILC Site Development of Kitakami IP Campus - "Reference Site Schedule"

- Detector assembly can only start 10 Years after project approval
- Note that it takes (according to our best estimate) seven years to assemble the detector
- What can be parallelised to be not paralysed?

T. Sanuki

FCC Civil Engineering

SuperKEKB – IA Region Vacuum System

K. Shibata

Roman Pöschl

VerteX Detector (VXD)

SuperKEKB – IA Region Vacuum System

Welding of different materials: Ti, Be, Ta ...

LCWS 2024

Roman Pöschl

VerteX Detector (VXD)

Beam Plasma and Acceleration Simulation Toolkit - BLAST

Propose to leverage for faster & larger scale modeling for colliders (all types) R&D

- Impressive project for end-to-end accelerator modeling
- Beam-Beam Interaction by WarpX component

E4S is unique in the world: → advantage of unparallel performance & portability.

Python interface: Modular approach pioneered by Warp 20+ years ago →Coupling to other codes (e.g., Posinst, ICOOL, ...)

Access to powerful AI/ML tools

WarpX – Benchmarking for ILC beams

A. Formenti

• ... results identical to GuineaPig for ILC flat beams

WarpX – Benchmarking for ILC beams

A. Formenti

- ... at much higher computing speed
- Note in passing the capability to go to highest energies (10 TeV) and the spherical beam spots

Beam Induced Background – ILC vs. FCCee

Roman Pöschl

Ror

C³ Background in SiD

Pair Background

Hit density for 133 bunch crossings for C³-250 simulated with GUINEA-PIG and tracked through a 5T solenoid field

Occupancy in the SiD vertex barrel for the C³ beam structure is well within the limits set for ILC.

- Good to see that these studies are picked up
- Used "old" muon background files by Daniel
- MUCARLO not maintained anymore

Muon Background

D. Ntounis

Pair Induced Background at HAHLF

=> imbalance left/right: is it really helpful?

- Energy = 500 : 31.3 GeV
- charge = 1.33 : 3 x 10¹⁰ particles
- σ_z = 75 : 75 μm HALHF:

Adaptation of beam sizes and Magnetic field to reduce background

H. Shi

- "Extended" Beampipe with 20mm radius
- Compare with 16mm for "typical" **FCCee Detector**

- Luminosity related backgrounds
- One of the dominant backgrounds at the CEPC, may lead to two different impacts:
 - The impacts on detector, caused by the electrons/positrons produced by photons
 - The impacts on accelerator components outside of the IR, caused by the photons directly.
- Hard to mitigate

CAIN simulation May need

- 0.1%-1% X0 for |cosθ| < 0.8
- 1% X0 for |cosθ| < 0.93

5

- $0.95 < |\cos \theta| < 0.99$
- complicated
- May not be able
- to instrument $|\cos\theta| > 0.99$

- Infrastructure
 - Damping ring moved 100m away in current ILC IP region design
 - ILC site development may slow down the project realisation (not only) at Kitakami
 - FCC civil engineering advancing impressively, studies are also useful for LC (Gotthard Tunnel study)
- Magnets are a serious concern
 - No manufacturer of AI stabilised Rutherford cables. Alternatives?
 - Magnet winding on or off-site (a striking example for conflict with site development)?
- "Real life" experience
 - Competences developed for SuperKEKB will be valuable for LC
 - e.g. Beam pipe welding
- MDI regions
 - Each collider option yields a different MDI region
 - Most striking difference between Circular and Linear Colliders (different L*)
 - XCC has to host four beam pipes (and short L*)
- Tools
 - CAIN and GuineaPig are still our working horses to study beam-beam interactions
 - MUCARLO not maintained
 - Vibrant project BLAST for accelerator modeling including MDI region
 - LC community should have very strong interest to get (more) involved

Backup