 Tracking Vertexing and Timing Detectors Summary

Ziad El Bitar (CNRS)

Nicola De Filippis (Politecnico and INFN Bari) Shinya Narita (Iwate University)

Ariel Schwartzman (SLAC)
Caterina Vernieri (SLAC)

11-July-2024

Outline

- Vertex detector (MAPS)
- Tracker
- Dual Timer Pixel (Belle)
- TPC
- Drift Chamber
- CLD silicon
- Timing layers
- Particle ID
- dE/dX/dN/dx
- impact of RICH in CLL silicon tracking performance

MAPS for tracking and calorimetry

Caterina Vernieri

Monolithic Active Pixel Sensors - MAPS

A suitable technology for high precision tracker and high granularity calorimetry

- Monolithic technologies can yield to higher granularity, thinner, intelligent detectors at lower overall cost
- Significantly lower material budget: sensors and readout electronics are integrated on the same chip
Eliminate the need for bump bonding : thinned to less to $50 \mu \mathrm{~m}$
- Smaller pixel size, not limited by bump bonding ($<25 \mu \mathrm{~m}$)
- Lower costs : implemented in standard commercial CMOS processes technologies with small feature size ($65-110 \mathrm{~nm}$)
Either reduce power consumption or add more features
- Target big sensors (up to wafer size) through use of "stitching" (step-andrepeat of reticles) to reduce further the overall material budget

Current sensor optimization in TJ180/TJ65 nm process Effort to identify US foundry on going

Snowmass White Paper 2203.07626 Common US R\&D initiative for future Higgs Factories 2306.13567

MAPS for ECal

Instruments 2022, 6(4), 51

Fine granularity allows for identification of two showers down to the mm scale of separation

- SiD detector configuration with $25 \times 100 \mu \mathrm{~m}^{2}$ pixel in the calorimeter at ILC
- With no degradation of the energy resolution
- The design of the digital MAPS applied to the ECal exceeds the physics performance as specified in the ILC TDR
- The 5T magnetic field degrades the resolution by a few per cent due to the impact on the lower energy electrons and positrons in a shower
- Future planned studies include the reconstruction of showers and π^{0} within jets, and their impact on jet energy resolution
 10 GeV showers separated by one cm

- $65 n m$ CMOS imaging process

O increased density for circuits: higher spatial resolution and improved timing at same power consumption

- supports stitching \rightarrow Wafer scale MAPS

MAPS for tracking and calorimetry

- Focus on achieving nanosecond timing resolution at low power consumption:
- Suppression of beam backgrounds to keep occupancy low and/or trigger decision before reading out the detector

Summary of NAPA-p1 Performance

	Specification	Simulated NAPA-p1
Time resolution	$1 \mathrm{~ns}-\mathrm{rms}$	$0.4 \mathrm{~ns}-\mathrm{rms}$
Spatial Resolution	$7 \mu \mathrm{~m}$	$7 \mu \mathrm{~m}$
Noise	$<30 \mathrm{e}-\mathrm{rms}$	$13 \mathrm{e}-\mathrm{rms}$
Minimum Threshold	$200 \mathrm{e}-$	$\sim 80 \mathrm{e}-$
Average Power density	$<20 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.1 \mathrm{~mW} / \mathrm{cm}^{2}$ for 1% duty cucle

Napa-p1

DuTiP:
 Vertex Detector for Belle II Upgrade and Intermediate Silicon Tracker for ILC

Yasuo Arai, Tristan Fillinger, Junji Haba, Akimasa Ishikawa,
Ikuo Kurachi', Kenkichi MiyabayashiD, Miki Mitanic, Emi OzakiD, Takehiro Takayanagi, Ayaki Takeda ${ }^{\text {C }}$, Hina Tagashira ${ }^{\text {D }}$ Toru Tsuboyama, Miho Yamada ${ }^{\text {E }}$

KEK, D\&S ${ }^{\text {B }}$, Miyazaki University ${ }^{\text {C }}$, Nara Women's University ${ }^{\text {B }}$, TMCIT $^{\text {E }}$

DuTiP and SOI

- We invented Dual Timer Pixel (DuTiP) concept for Belle II Vertex detector upgrade that can be also used for layer 7 and 8 of ILD SIT.
- Our requirements for Belle II Vertex detector
- Binary detector to reduce data size and power consumption.
- Relatively fast clock of $>10 \mathrm{MHz}$ to reduce the occupancy to $\mathrm{O}\left(10^{-4}\right)$ or less
- Global shutter readout based on L1 Trigger to reduce data size.
- Hold signals at least trigger latency of 4.4us
- Low power consumption $\sim 100 \mathrm{~W} / \mathrm{cm}^{2}$
- For normal temperature air cooling

We adopted Silicon on Insulator (SOI) technology to realize the DuTiP

Silicon-on-Insulator (SOI)

- Insulator layer (BOX layer) sandwiched by circuit and sensor layer

Fully depleted sensor : Fast signal, good S / N

- CMOS logics w/o well structure : High density, small parasitic capacitance
- Monolithic : Low material budget
ulk
- Good for high energy physics
- We adopt Lapis semiconductor $0.2 u m \mathrm{FD}-\mathrm{SOI}$ process

20240709
Back Plane

One Pixel

DuTiP1 with SOI technology

- Dimension

Efficiency and Yield

- Efficiency
- Using ${ }^{90}$ Sr : ~98+-2\%
- Cosmic or accidental noise hit are subtracted with dry run data.
- Large systematic uncertainty due to limited setup

- To be tested with test beam
- Production yield is checked without collimator
- More than 99% pixel is working
- Pixel Size 45um x 45um
- $45 u m / v 12=13 u m$
- charge sharing improves the resolution
- 64x64 pixel array
- 300um ${ }^{t}$ (to be thinned to ${ }^{\sim} 50 \mathrm{um}^{\text {t }}$)
- Analog circuit
- ALPIDE analog circuit fabricated on SOI by Strasbourg and modified by KEK.
- Low power consumption amplifier
- Digital Circuit
-7 bit timer $\times 2$
- $15.9 \mathrm{MHz}(62.9 \mathrm{~ns})$ CLK (SuperKEKB 509MHz/32(1.97ns*32))
- Trigger latency of at most 8us (4.4us requirement)
- Only current and previous time buckets (no next bucket)

20240116-No sophisticated readout circuit not fabricated

New TPCs with charge spreading resistive Micromegas for T2K near detector
 Paul Colas, U. Paris Saclay

From ILC TPC R\&D to a real neutrino
experiment in Japan

Charge spreading

resistive anode MicroMegas

Mesh @ GND
Amplification gap: $\sim 128 \mu \mathrm{~m} \quad \operatorname{DLC}(\sim 100 \mathrm{~nm}) \uparrow \vec{E}$
insulator $\sim 50 \mathrm{~lm}$ @ $\sim 360 \mathrm{~V}$

FR4 PCB

By adding a resistive layer and a dielectric layer on top of the anode, we obtain a resistive-capacitive continuous network that spreads evenly the charge between the hit pad and its neighbours.
This allows a barycentre to be determined, which greatly improves the resolution : resolutions as good as $1 / 50$ times the pad size are obtained.

Many tests in recent years

Beam test at DESY in 2015 (LCTPC, 2 DLC modules)

- natin

Cosmic-ray test at Saclay in 2017 (T2K) Beam test at CERN in August 2018 (T2K) Beam test at DESY in November 2018 (LCTPC) Cosmic-ray test in Saclay since January 2019 (LCTPC/FCC) Beam test at DESY in June 2019 and 2021 (T2K) Cosmic test at CERN since December 2019 (T2K) Cosmic test at CERN since December 2019 (T2K)
Cosmic tests in Saclay during the covid year (T2K) ($4-6$ modules

Performance (beam test at DESY in 2021)

Installation at JPARC

32 (+spares) ERAM modules built at CERN (Rui de Oliveira) and characterized/tested at CERN
Field cages built in industry in Spain under supervision by T. Lux, G. Collazuol et al.).

TPCs assembled at CERN (gluing stripped kapton and soldering resistor chains) and transported by plane to JPARC.
Then re-tested on surface and lowered in the T2K pit (T. Lux). 100% operationnal. Excellent gas (system by R. Guida built at CERN and commissioned by E. Radionici) : $2 \mathrm{ppm} \mathrm{O}_{2}$ and $5 \mathrm{ppm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

Summary

- In the last 8 years, a new type of TPCs has been designed, constructed and commissioned. It uses the ERAM technology (Encapsulated Resistive Anode Micromegas) to spread the charge and protect the electronics.
- A lot of progress has been obtained within T2K to understand the charge spreading, the homogeneity of the gain and RC maps.
- Two new such TPCs have been installed and commissionned at JPARC in the T2K Near Detector, contributing to a very significant upgrade of this experiment.
- All this will prove very useful as a preparation for an ILC TPC.

Building a Precise TPC Field Cage
 Oliver Schafer

Large Prototype TPC Field Cage - V2

State of October 2019

- Challenge of a high-precision TPC field cage:
- Low material, high HV stability, high mechanical precision
- Why a new TPC prototype field cage?
- Current field cage built by external company:
Skewed by about factor 10 too much
\rightarrow field homogeneity not within specs
- Want to gain more in-house experience for building the big ILD TPC
- Verifiable material budget
- New workshop at DESY with precision mandrel for construction including vacuum bag ready

DESY. The Quest of Building a Precise TPC Fieldcage | Oliver Schäfer | LCWS Tokyo July $9^{\text {th }} 2024$

Field Cage V2 in 2020

Field Strip Foil

- December: Investigating and fixing resistance mismatch
- Signal runtime measurements (reflectometry) lead to find a tiny hole to the mirror strip side
- Recorded the growth of that hole by interplay of electrical discharges and thermal decomposition (see separate video)
- Carefully "cleaned" hole borders and removed copper
- Closed by gluing in a polyimide patch
- Re-painted conducting pattern on top
- Resistance after repair roughly as expected
- December $16^{\text {th }}:$ "We stay at home" rule
- HV test of the repaired place planned
- Final gluing delayed, no activity in workshop since

Field Cage V2 in 2021

Precision Measurement of the Resistor Chain

- All resistors need to be in a bin of 50Ω width to fulfill our requirement on the field homogeneity
- September:modified the measurement equipment we used to select/sort the resistors before soldering, so it can be used on the field strip foil (same Wheatstone bridge design); includes a temperature sensor

2 spring loaded measurement pins

Field Cage V2 in 2021

Precision Measurement of the Resistor Chain

- Measurement from 16.Sep. 2021
- Field strip foil lying on protection foil, temperature sensor and lamp mounted on the table
- Observed charge-up as well as discharge behavior and fluctuations
- Impact of the foil beneath?
- Tried ESD
protection mat
\rightarrow didn't work,
resistance too low
- Impact of mounted lamp and temp sensor?

DESY. The Quest of Builining a Precise TPC Fieldcage | Oliver Schàere LLCWS Tokyo July 9 n 2024

Field Cage V2 in 2022
Picking up from Collaboration Meeting 2022

- Remeasured on $24^{\text {th }}$ January 2022: all strips sufficiently within specs
- Assumption: epoxy resin took that long to fully cure and for moisture trapped in bubbles to diffuse out \rightarrow Proceed with high voltage test

High Granularity TPC for Tera-Z at CEPC

Huirong Qi

\#1. Material budget at endcape/barrel Carbon Fibber

- Consideration of new Carbon Fiber barrel instead of the honeycomb barrel
- Ultra-light material of the TPC barrel : $0.63 \% \mathrm{X}_{0}$ in total, including
- FEA preliminary calculation: 0.2 mm carbon fibber barrel can tolerant of LGAD OTK $(\mathbf{1 0 0} \mathbf{K g})$ - Optimization of the connection back frame of the endcap (on going)

Pixelated readout TPC technology for CEPC TDR

- A pixelated readout TPC is a good option to provide realistic physics requirements of Higgs Physical and Tera-Z Physics also (2E36) at CEPC.
- Pixelated readout \rightarrow better resolution \rightarrow low gain \rightarrow less distortion
- Highlights of Pixelated readout TPC technology for CEPC TDR
- Can deal with high rates $\left(\mathrm{MHz} / \mathrm{cm}^{2}\right)$
- High spatial resolution \rightarrow better momentum resolution
- PID: $\mathrm{dE} / \mathrm{dx}+\mathrm{dN} / \mathrm{dx}$ (In space)
- Excellent two tracks separation

- Low voxel occupancy : 1E-5 to 1E-6 (cite\#2)

At 2 E36 with Physics event only, even bunch distribution(cite\#3).

- Pixelated readout much LOWER inner most occupancy (0.6 m inner radius)
- Pixelated readout can easily handle a high hits rate at Z pole. (cite\#4)
- The data at the inner radius @40M BX Z pole@1 Module ~0.05Gbps(Maximum).

Prototype setup to verify power, spatial resolution, and distortion tolerances

High Granularity TPC for Tera-Z at CEPC

\#3. Improved dE/dx+dN/dx

- Full simulation framework of pixelated TPC developed using Garfied++ and Geant4 at IHEP
- Investigating the π / κ separation power using reconstructed clusters, a 3σ separation at 20 GeV with 50 cm drift length can be achieved
- $\mathrm{dN} / \mathrm{dx}$ has significant potential for improving PID resolution

$$
\mathrm{Sp}=\frac{\left|\mu_{A}-\mu_{B}\right|}{\frac{\sigma_{A}+\sigma_{B}}{2}}
$$

Drift Chamber for IDEA at FCC-ee

Nicola De Filippis

Design features of the IDEA Drift Chamber

For the purpose of tracking and ID at low and medium momenta mostly for heavy flavour and Higgs decays, the IDEA drift chamber is designed to cope with:
> transparency against multiple scattering, more relevant than asymptotic resolution
$>$ a high precision momentum measurement
> an excellent particle identification and separation

$>$ inner radius $\mathrm{R}_{\text {in }}=0.35 \mathrm{~m}$, outer radius $\mathrm{R}_{\text {out }}=2 \mathrm{~m}$
$>$ length $L=4 m$
$>$ drift length $\sim 1 \mathrm{~cm}$
> drift time $\sim 150 n s$
>343968 wires in total:
sense vires: $20 \mu \mathrm{~m}$ diameter $\mathrm{W}(\mathrm{Au})=>56448$ wires
field wires: $40 \mu \mathrm{~m}$ diameter $\mathrm{Al}(\mathrm{Ag})=>229056$ wires
f. and g. wires: $50 \mu \mathrm{~m}$ diameter $\mathrm{A}(\mathrm{Ag})=>58464$ wires

Drift Chamber for IDEA at FCC-ee

2025 full-length prototype: Goals

- Check the limits of the wires' electrostatic stability at full length and at nominal stereo angles
- Test different wires: uncoated AI, C monofilaments, Mo sense wires, ..., of different diameters - Test different wire anchoring procedures (soldering, welding, gluing, crimping, ...) to the wire PCBs - Test different materials and production procedures for spokes, stays, support structures and spacers
- Test compatibility of proposed materials with drift chamber operation (outgassing, aging, creeping, ...)
- Validate the concept of the wire tension recovery scheme with respect to the tolerances on the wire positions
- Optimize the layout of the wires' PCBs (sense, field and guard), according to the wire anchoring procedures, with aim at minimizing the end-plate total material budget
- Starting from the new concepts implemented in the MEG2 CDCH robot, optimize the wiring strategy, by taking into account the 4 m long wires arranged in multi-wire layers
- Define and validate the assembly scheme (with respect to mechanical tolerances) of the multi-wire layers on the end plates
- Define the front-end cards channel multiplicity and their location (cooling system necessary?)
- Optimize the High Voltage and signal distribution (cables and connectors)
- Test performance of different versions of front-end, digitization and acquisition chain

```
TOTAL LAYERS: }
Field wires: 965
Guard wires: }26
Seards wire layers: Sense wire boards: 8
Field wire boards: 22 Field wire boards: 22
Guard wire boards: 12 HV values: 14
```

2025 full-length prototype: Coverage

$$
z=-2.0 m
$$

$z=0$
$z=+2.0 m$

Readout channels: $8+8+16+16+16+16+16+16=112$

2021/2022 beam test results: resolutions

2021/2022 beam test results: performance plots

- Several algorithms developed for electron peak finding:
\checkmark Derivative Algorithm (DERIV)
\checkmark and Running Template Algorithm (RTA)
\checkmark NN-based approach (developed by

IHEP)

Poissonian distribution for the number of clusters

Sense Wire Diameter $15 \mu \mathrm{~m}$; Cell Size 1.0 cm Track Angle 45; Sampling rate $2 \mathrm{GSa} / \mathrm{s}$

Drift Chamber Cluster Counting for CEPC

arXiv: 2402.16493
$d N / d x$ reconstruction with supervised learning

Reconstruction task: Determine the number of primary electrons in the waveform

2-step machine learning algorithm:

- Peak finding by LSTM:
- Detect peaks from both primary and secondary electrons
- Clusterization by DGCNN:
- Remove secondary electrons from the detected peaks in step 1

PID performances with supervised models

Detected primary electrons from a waveform

Reconstructed \# of clusters distributions

The reconstructed $\mathrm{n}_{\text {cls }}$ distributions are very well Gaussian-like

dN/dx resolutions for high momenta pions/kaons are $<3 \%$, which are much better than typical $\mathrm{dE} / \mathrm{dx} \sim 5 \%$

Drift Chamber Cluster Counting for CEPC

Test beam with detector prototype (IHEP)

- Two drift tubes + preamps + ADC (1 GHz)
- The system was tested with electron beam at IHEP

Scintillator

High bandwidth curren sensitive preamplifiers
based on LMH6629 have based on LMH6629 hav
been designed and developed

Typical collected waveforms

- He: $\mathrm{iC}_{4} \mathrm{H}_{10}=90: 10$
- Digitizer: DT5751
- Sampling rate: 1 GHz
- Four channels, two for scintillators, two for drift tubes

Summary

- R \& D progress of the CEPC drift chamber

- PID performance: $>3 \sigma \mathrm{~K} / \pi$ separation at $20 \mathrm{GeV} / \mathrm{c}$ for 1.2 m track length
- $\mathrm{dN} / \mathrm{dx}$ reconstruction with deep learning shows promising performance for simulation and testbeam data
- Fast electronics is under development. Preliminary analysis with the testbeam validates the electronics and the feasibility of $\mathrm{dN} / \mathrm{dx}$ measurement
- Preliminary mechanical design and FEA show a stable structure
- Global electronics scheme is reasonable

- Plans

- Fine detector optimization
- Optimize deep learning algorithm and FPGA implementation
- Prototyping and testing with full-length cells (mechanics, manufacturing, testing)

CLD Tracking Performance
 Gaelle Sadowski

CLD* detector concept at FCCee

- Consolidated option based on the detector design developed for CLIC detector
- All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system
- Resistive plate chambers muons detector

CLD Tracking Performance

CLD with PID

Tracker geometry - CLD_o2_v05 \& CLD_o3_v01

- p_{T} resolution depend mainly on lever arm
- Differences observed are compatible with analytic formula $\approx 15 \%$
- For $\theta=50^{\circ}$: transition Barrel / Endcap

Tracking resolution
Effect of magnetic field

- Magnetic field of 2 T is imposed for Z peak $(\sqrt{s}=91 \mathrm{GeV})$
- 2 T to 3 T (without any consideration of whether it is possible)increase p_{T} resolution and compensate the loss of p_{T} resolution caused by the shrunk tracker

CD. magnetic field $=2 T$

Summary

- Impressive progress in simulation, detector R\&D, and building and testing prototypes to verify the functionality of various vertex and tracking technologies, as well as readout systems and ASICs
- Tracking, Vertex, and Timing Detector requirements continue to evolve as physics studies advance
- particle ID both at low and high momentum: Timing layers, cluster counting and $\mathrm{dE} / \mathrm{dx}$, impact of RICH on tracker design
- Long lived particles, kinks, ...

