Prospects for Early Career Accelerator Physicists

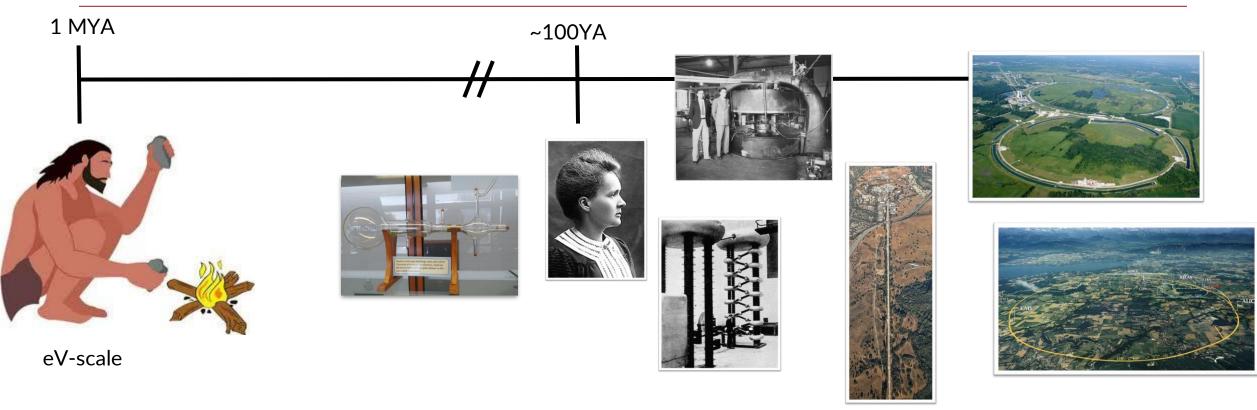
Spencer Gessner, SLAC

LCWS2024, Tokyo July 11, 2024

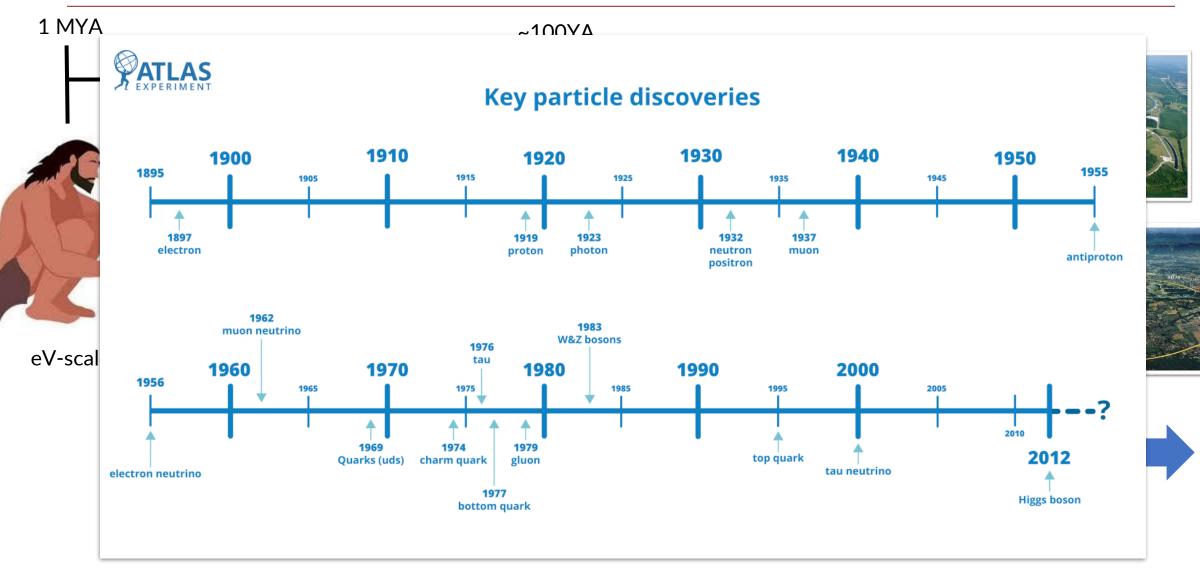
Today's career paths in accelerator physics are different from previous generations.

Fewer colliders today, but accelerator physics is a great choice for a career in science.

The current accelerator work force must expand to meet the needs of future colliders.


A Career in Colliders

- 1973-1982: Design, construction, and operation of CESR collider at Cornell.
- 1983-1993: Design, construction, and operation of SLC collider at SLAC.
- 1993-2006: Design, construction, and operating of PEP-II collider at SLAC.
- Advisory and collaborative roles on many other colliders including SPEAR, KEKB, Super-KEKB, BEP-II, Tevatron, LHC, and EIC.


John Seeman Distinguished Staff Scientist SLAC National Accelerator Lab

Alignment Between Technology and Nature

keV to 10 TeV in 120 years 10 orders of magnitude!

Alignment Between Technology and Nature

Fewer Colliders but MANY Accelerators

Priorities for Accelerator R&D - US Facility Construction / Preparation

Contemporary accelerator facility construction activity in the US from DOE Science Programmes:

Basic Energy Sciences Advisory Committee – 2023 Facilities Charge:

- Linac Coherent Light Source II High Energy Upgrade: \$710M CD3B
- Spallation Neutron Source Second Target Station: \$1800M CD1
- National Synchrotron Light Source II Experimental Tools III: \$350M CD0
- Linac Coherent Light Source II Low Emittance Injector: \$210M
- National Synchrotron Light Source II Upgrade: \$1000M
- Linac Coherent Light Source X: \$1500M

High Energy Physics Advisory Panel – 2023 Facilities Charge:

- LBNF/DUNE: \$350M CD3A (furthest advanced sub-project)
- Fermilab Accelerator Complex Enhancement Main Injector & Target: \$?
- Advanced Accelerator Test Facilities (LWFA / PWFA): \$?
- Future Energy Frontier Colliders (FCC / ILC / ?): \$?
- Fermilab Accelerator Complex Enhancement Booster Replacement: \$?

Nuclear Science Advisory Committee – 2023 Facilities Charge:

- Electron-Ion Collider: \$2000M CD1
- Facility for Radioactive Ion Beams Energy Upgrade: \$?

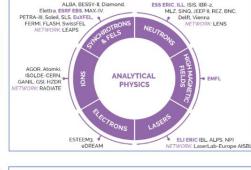
Peter Williams | European LDG Meeting, BNL | 06/06/2024

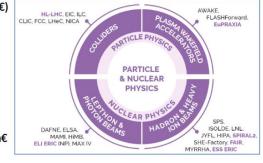
Priorities for Accelerator R&D - European Facility Construction / Preparation

ESFRI European Strategy Forum on Research Infrastructur

Main body for pan-European research coordination = ESFRI – representation from: European Commission, Each of the 27 EU Member States, Each Associated Country (= a further 15 States e.g. UK)

The latest strategy report on Research Infrastructures (2021) enumerates the live priority projects and their "investment costs". Accelerators fall under "Analytical Physics" (light & neutron sources) and "Particle & Nuclear Physics" categories:


ESFRI Projects (Early stage, construction start expected within 5 years):


EuPRAXIA – Plasma & novel acceleration R&D facility (569 M€)

ESFRI Landmarks (Finalising construction or operational):

- ESRF-EBS Upgrade of 8 GeV synchrotron light source to near-diffraction limit (128 M€)
- ELI Extreme Light Infrastructure = high power laser multi-site facility (850 M€)
- European Spallation Source SC linac driven neutron source (3009 M€)
- European XFEL SC linac driven free-electron laser (1540 M€)
- FAIR Heavy ion synchrotron, storage rings & antiproton production (? M€)
- High-Luminosity LHC (1408 M€)
- SPIRAL-2 light ion SC linac upgrade of cyclotron based ion facility (307 M€)

Funding models are <u>bespoke</u> to each. **The list matters as it guides EU research funding** – notably "Framework programmes" – current one is **Horizon Europe** (2021 – 2027) = 95 Bn€

Peter Williams | European LDG Meeting, BNL | 06/06/2024

~20 new and ongoing accelerator construction and upgrade projects in US and Europe.

Page 5

Fewer Colliders but MANY Accelerators

Jie Gao, IHEP

CEPC in Synergy with other Accelerator Projects in China

Project name	Machine type	Location	Cost (B RMB)	Completion time
СЕРС	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII-U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

~10 projects in China plus accelerator upgrades in Japan and Korea.

Fewer Colliders but MANY Accelerators

Jie Gao, IHEP

CEPC in Synergy with other Accelerator Projects in China

Project name	Machine type	Location	Cost (B RMB)	Completion time
СЕРС	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII-U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025

High demand for accelerator physicists now and in the

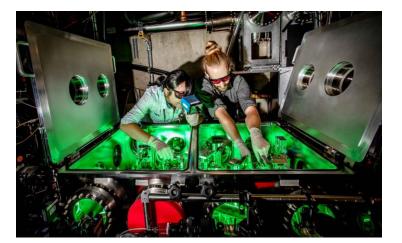
future.

		SIOM of CAS (Shanghai)					
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031			
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)			
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025			
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027			
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029			
The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB							

~10 projects in China plus accelerator upgrades in Japan and Korea.

R&D is critical for training young accelerator physicists

Today's accelerator physicists come from High Energy Physics backgrounds, but also:


- Materials science
- •Plasma physics
- •Photon science

SLAC

- •Computer science
- •Electrical engineering
- Mechanical engineering
- •Many other disciplines

R&D converts generic scientific skills into accelerator knowledge.

Good news!

- The P5 Report specifies \$10M increase in GARD funding plus \$35M in accelerator collider R&D.
- That's a 50% increase over current US accelerator R&D.

Where will new accelerator physicists come from?

- Continued and expanded support of funding agencies for university programs.
- Support for USPAS, CAS, JUAS. Bring back LC school?