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Abstract. Parton showers are important tools in the event generation chain for
present and future colliders. Recently, their formally achieved accuracy has
been under extended scrutiny. This contribution will present a novel take on
dipole parton showers, resulting in the design of a new parton shower called
ALARIC that is implemented in the SHERPA framework. Its resummation prop-
erties, including analytic and numerical proofs of its NLL accuracy, will be
discussed alongside the latest developments.

1 Introduction

Parton showers serve as crucial steps in modern Monte Carlo event generators [1]. They con-
nect the hard scale at which fixed order perturbation theory is adequate to calculate scattering
amplitudes with the low scale objects that are observed in particle physics experiments like
the current LHC or future lepton colliders. While parton showers have been phenomenolog-
ically very successful for decades now, their further development in several directions, such
as more accurate treatment of colour [2–15], spin correlations between subsequent emissions
[16–18] or the inclusion of higher order splitting functions [19–25], remains an active field
of research of high relevance particularly to precision experiments at future lepton colliders.
The logarithmic correctness and sub-leading effects of recoil and the imposed unitarity have
seen particular interest over the last years [26–34]. This has resulted in the construction of
several new parton showers designed to be logarithmically accurate [31]. This contribution
reports on the ALARIC parton shower [31] which has been shown to be very successful in
describing LEP data already at NLL and has recently been extended to include initial state
radiation [34] and multijet merging, thereby enabling a comprehensive exploration of data
from the LHC.

2 Basics of the ALARIC parton shower algorithm

This section will briefly review the basic theory principles of the ALARIC parton shower. The
focus will be on the crucial steps of partial fractioning the eikonal to define positive splitting
functions covering the full phase space and on the definition of the soft recoil scheme used
in the parton shower. For a more detailed treatment, see the original publications [31, 34, 35]
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and references therein. Let us start by analysing a general QCD matrix element in the limit
that gluon j becomes soft. The squared amplitude factorizes as [36]

n⟨1, . . . , n|1, . . . , n⟩n = −8παs

∑
i,k, j

n−1
〈
1, . . . , j\, . . . , n

∣∣∣TiTk wik, j

∣∣∣1, . . . , j\, . . . , n
〉

n−1 , (1)

where Ti and Tk are the color insertion operators defined in [37] and the soft eikonal is given
by

wik, j =
pi pk

(pi p j)(p j pk)
. (2)

The eikonal exhibits singularities in the limits where the gluon j becomes either soft, E j →

0, or collinear to either i or k, θi j → 0 or θ jk → 0. If one were to implement the soft
eikonal for each of the radiators i and k in the collinear limit, the soft-collinear contribution
to the emission probability [38] would therefore be double-counted. This can be solved by
following the technique of [39], which leads to angular ordered parton showers that are very
successful and implement the correct radiation pattern for example for event shapes, but have
problems in filling the relevant phase space for non-global observables [40]. In ALARIC, the
eikonal is rather separated into two parts by partial fractioning. Specifically,

wik, j = w̄
i
ik, j + w̄

k
ki, j with w̄i

ik, j =
1

pi p j

lik pi

lik p j
, (3)

and where

lµik =
pµi
pin
+

pµk
pkn
. (4)

with an for now arbitrary reference vector n. The soft eikonal can now be matched to the
collinear splitting function, see [31].
Overall four-momentum conservation is satisfied by selecting a general set of momenta K in
the event to define the recoil momentum

K̃ =
∑
k∈K

k . (5)

For the purpose of this discussion lets take all momenta in the amplitude as outgoing, such
that overall momentum conservation is written as∑

k∈K

kµ +
∑
k∈K

kµ = 0 (6)

where K is the sum over the remaining momenta in the event but not in K .
The emitter is shifted as

pi = z p̃i , n = K̃ + (1 − z) p̃i , (7)

which implies pi + n = p̃i + K̃. A light-like variant of n can be defined as

n̄ = n −
n2

2p̃in
p̃i = K̃ − κ p̃i , where κ =

K̃2

2p̃iK̃
. (8)

and new momenta are constructed as

p j = v n̄ +
1
v

k2
⊥

2 p̃iK̃
p̃i − k⊥ , where v =

pi p j

piK̃
(9)

K = (1 − v) n̄ +
1

1 − v
k2
⊥ + K̃2

2p̃iK̃
p̃i + k⊥ . (10)



The construction is consistent if

k2
⊥ = v(1 − v) 2p jK − v2K2 = v(1 − v)(1 − z) 2p̃iK̃ − v2K̃2 . (11)

Inserting this relation into Eq. (9) produces the final mapping

p j = (1 − z) p̃i + v
(
K̃ − (1 − z + 2κ) p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ − (1 − z + 2κ) p̃i

)
− k⊥ . (12)

Distributing the recoil amongst the particles making up K̃ implies a Lorentz transforma-
tion [37]

pµl → Λ
µ
ν(K̃,K) pνl , where Λ

µ
ν(K̃,K) = gµν −

2(K + K̃)µ(K + K̃)ν
(K + K̃)2

+
2KµK̃ν

K̃2
. (13)

If one would simply replace p̃i with pi and p j, the momenta in K would sum to∑
k∈K

k ≡ −K = −K̃ − p̃i + pi + p j . (14)

This clearly breaks momentum conservation, i.e. Eq. (6) does no longer hold. The neces-
sary change in a collection of momenta can be expressed as a Lorentz transformation that
transforms K̃ to K, or its inverse transforming K to K̃,

Λ
µ
ν(K̃,K)K̃ν = K (15)
Λ
µ
ν(K, K̃)Kν = K̃ . (16)

Note this relies on the momentum mapping ensuring that the momentum squared of K, K̃
does not change. Now overall momentum conservation can be satisfied by making either of
the two following replacements:

kµ → Λµν(K̃,K)kν ∀ k ∈ K (17)
or

kµ → Λµν(K, K̃)kν ∀ k ∈ K . (18)

3 Proof of accuracy preserving recoil scheme
An idealised parton shower works by iterative procedure generating higher multiplicity final
states from lower multiplicity ones by adding additional particles according to the splitting
function usually derived in the soft and collinear limits of QCD matrix elements. In practice,
away from the exact limits, it is necessary to distribute final recoil to particles in the event
either coming from the hard process or from previous parton shower emissions. Importantly,
there is a discrepancy between the final particle momenta produced by the shower and the
momenta entering into the calculation of emission probabilities at each step of the shower. It
is hence necessary that the recoil scheme of the parton shower only produces small changes
of the momenta of previous emissions, that should be vanishing in the limit taken also in a
resummed calculation. In the ALARIC recoil scheme these changes can be traced analytically.
The relevant method is for example used in the CAESAR formalism [41], see [42, 43] for
a practical implementation in SHERPA [44, 45], to extract a pure NLL contribution from a
general multiple emission integral of the form

F (v) =
∫

d3k1|M(k1)|2 e−R′ ln v
ϵv1

∞∑
m=0

1
m!

( m+1∏
i=2

∫ v1

ϵv1

d3ki|M(ki)|2
)
Θ
(
v − V({p}, k1, . . . , kn)

)
.

(19)



where v1 is the value of the observable in the leading (in v) emission, and k1 is the corre-
sponding momentum. This can be achieved by taking the limit

kt,l → k′t,l = kt,lρ
(1−ξl)/a+ξl/(a+b) , ηl → η

′
l = η−ξl

ln ρ
a + b

, where ξ =
η

ηmax
. (20)

where a, bl parameterise a generic observable in the soft limit as

V(k) =
(

kT,l

Q

)a

e−blηl , (21)

and kT,l, ηl are the transverse momentum and rapidity of an emission relative to leg l.
As discussed in the previous section, in the ALARIC shower mapping the emitter is just re-
scaled but does not absorb any transverse recoil,

pi = zp̃i . (22)

The newly emitted parton momentum p j on the other hand will have a finite transverse mo-
mentum relative to that direction that is to be compensated. This happens by either of the
replacements from Eq. (18)
It has been shown in [31] that this does not impose a significant change in the momenta of
already existing soft gluons. The general idea is to rewrite the momentum K as K̃ plus a
vanishing correction

Kµ = K̃µ − Xµ , where Xµ = pµj − (1 − z) p̃µi . (23)

For this it is important that K contains some momenta that are not scaling with ρ, which is
the only explicit condition on the choice of recoil momentum at this level. Following [31],
the Lorentz transformation can now be written as

Λ
µ
ν(K, K̃) = gµν + K̃µAν + XµBν , (24)

where

Aν = 2
[ (K̃ − X)ν

(K̃ − X)2
−

(K̃ − X/2)ν

(K̃ − X/2)2

]
, and Bν =

(K̃ − X/2)ν

(K̃ − X/2)2
. (25)

The leading contributions to the coefficient in Eq. (24) in the ρ→ 0 limit are given by

Aν
ρ→0
−→ 2

K̃X
K̃2

K̃ν

K̃2
−

Xν

K̃2
, and Bν

ρ→0
−→

K̃ν

K̃2
. (26)

The relevant quantity to consider now is the difference of a generic momentum before and
after applying the respective transformation:

∆pµl = pµl − Λ
µ
νpνl = ±

[
K̃µAν + XµBν

]
pνl , (27)

where the plus or minus in the last expression correspond to performing one or the other
transformation. As has been argued in [31], this difference indeed corresponds to a vanishing
change in each of the momentum components. For completeness, the result from [31] are:

∆p0,3
l

p0,3
l

∼ ρ(1−max(ξi,ξ j))/a ,

∆p1,2
l

p1,2
l

∼ ρ(1−ξl−b/(a+b)(max(ξi,ξ j)−ξl))/a < ρ(1−b/(a+b))(1−ξl)/a . (28)

It is evident that for ξl < 1 and max(ξi, ξ j) < 1, the relative changes vanish in the ρ→ 0 limit.
The only potential issue is at ξl = 1 and/or max(ξi, ξ j) = 1, which however correspond to a
phase-space region of measure zero.
Corresponding numerical checks have been performed and documented in [31].
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Figure 1. Dijet mass spectrum measured by ATLAS [46] for anti-kt jets with transverse momentum
pT > 60 GeV within a rapidity range of |ymax| < 2.8, compared to predictions from ALARIC.

4 ALARIC for collider phenomenology

The ALARIC parton shower has been compared to a variety of LEP data in [31], finding overall
good agreement in line with the quality of description achieved with previous dipole showers
like DIRE. Fig. 1 illustrates the description of jet data measured at the LHC, complementing
the study performed in [34]. Predictions are compared with dijet data measured by the AT-
LAS collaboration [46]. Jets are reconstructed with the anti-kt algorithm [47] and required
to have a transverse momentum of pT > 60 GeV. The data are presented in several rapidity
slices in the central region |ymax| < 2.8. ALARIC describes the mass spectrum well over the
full range, within the experimentally quoted uncertainty. Some potentially systematic trends
are visible, which however do not appear significant and would need a closer examination in-
cluding potential correlations between errors both on the experimental as well as theoretical
side. Additionally, Fig. 2 compares ALARIC predictions to data for jet angularities measured
in [48], which have been studied within the SHERPA framework previously in [49–51]. The
description of the data is generally good, in line with the observations made in the above
references on the data agreement of both established dipole parton showers as well as NLL
resummation.

5 Conclusion and Outlook

This contribution discussed the recently introduced ALARIC parton shower, in particular its
main underlying construction principles, its analytically tractable resummation properties and
the succesful description of collider data with an NLL parton shower. Going forward towards
the precision era both at the LHC as well as in preparing for future lepton colliders will see
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Figure 2. Les Houches angularity λ1/2 measured by CMS [48] in dijet events on central jets in the
transverse momentum range 120 < pjet

T < 150 GeV compared to predictions from ALARIC

the development of parton showers including NLO splitting functions [19–25] and aiming
for NNLL accuracy. Simultaneously, the standard of fixed order calculations is becoming
NNLO. Despite some progress in mitigating non-perturbative corrections with the help of jet
substructure techniques such as soft drop grooming, see for example [52–67], a better control
of these corrections becomes increasingly important with further progress in perturbative
accuracy achieved in general purpose Monte Carlo event generators.

Acknowledgements

I am grateful to all collaborators who contributed to the ALARIC project, Benoit Assi, Florian
Herren, Stefan Höche, Frank Krauss and Marek Schönherr. My work on this project was sup-
ported by STFC under grant agreement ST/P006744/1 as well as by the Durham University
Physics Department Developing Talents Award. The work during the preparation of the orig-
inal talk was further supported by the German Academic Exchange Service (DAAD). The
work during the finalisation of this manuscript was partially funded by the European Union.

References

[1] J.M. Campbell et al., Event Generators for High-Energy Physics Experiments, SciPost
Phys. 16, 130 (2024), 2203.11110. 10.21468/SciPostPhys.16.5.130

[2] S. Platzer, M. Sjodahl, Subleading Nc improved Parton Showers, JHEP 07, 042 (2012),
1201.0260. 10.1007/JHEP07(2012)042

[3] S. Plätzer, Summing Large-N Towers in Colour Flow Evolution, Eur. Phys. J. C 74,
2907 (2014), 1312.2448. 10.1140/epjc/s10052-014-2907-2

[4] Z. Nagy, D.E. Soper, Effects of subleading color in a parton shower, JHEP 07, 119
(2015), 1501.00778. 10.1007/JHEP07(2015)119

[5] S. Plätzer, M. Sjodahl, J. Thorén, Color matrix element corrections for parton showers,
JHEP 11, 009 (2018), 1808.00332. 10.1007/JHEP11(2018)009

[6] Z. Nagy, D.E. Soper, Parton showers with more exact color evolution, Phys. Rev. D 99,
054009 (2019), 1902.02105. 10.1103/PhysRevD.99.054009

https://doi.org/10.21468/SciPostPhys.16.5.130
https://doi.org/10.1007/JHEP07(2012)042
https://doi.org/10.1140/epjc/s10052-014-2907-2
https://doi.org/10.1007/JHEP07(2015)119
https://doi.org/10.1007/JHEP11(2018)009
https://doi.org/10.1103/PhysRevD.99.054009


[7] Z. Nagy, D.E. Soper, Effect of color on rapidity gap survival, Phys. Rev. D 100, 074012
(2019), 1905.07176. 10.1103/PhysRevD.100.074012

[8] J.R. Forshaw, J. Holguin, S. Plätzer, Parton branching at amplitude level, JHEP 08, 145
(2019), 1905.08686. 10.1007/JHEP08(2019)145

[9] J. Holguin, J.R. Forshaw, S. Plätzer, Improvements on dipole shower colour, Eur. Phys.
J. C 81, 364 (2021), 2011.15087. 10.1140/epjc/s10052-021-09145-1

[10] S. Höche, D. Reichelt, Numerical resummation at subleading color in the strongly or-
dered soft gluon limit, Phys. Rev. D 104, 034006 (2021), 2001.11492. 10.1103/Phys-
RevD.104.034006

[11] J. Holguin, J.R. Forshaw, S. Plätzer, Comments on a new ‘full colour’ parton shower
(2020), 2003.06399.

[12] M. De Angelis, J.R. Forshaw, S. Plätzer, Resummation and Simulation of Soft Gluon
Effects beyond Leading Color, Phys. Rev. Lett. 126, 112001 (2021), 2007.09648.
10.1103/PhysRevLett.126.112001

[13] K. Hamilton, R. Medves, G.P. Salam, L. Scyboz, G. Soyez, Colour and logarith-
mic accuracy in final-state parton showers, JHEP 03, 041 (2021), 2011.10054.
10.1007/JHEP03(2021)041

[14] S. Plätzer, Colour evolution and infrared physics, JHEP 07, 126 (2023), 2204.06956.
10.1007/JHEP07(2023)126

[15] S. Plätzer, Amplitude and colour evolution, SciPost Phys. Proc. 15, 007 (2024),
2210.09178. 10.21468/SciPostPhysProc.15.007

[16] Z. Nagy, D.E. Soper, Parton showers with quantum interference: Leading color, with
spin, JHEP 07, 025 (2008), 0805.0216. 10.1088/1126-6708/2008/07/025

[17] P. Richardson, S. Webster, Spin Correlations in Parton Shower Simulations, Eur. Phys.
J. C 80, 83 (2020), 1807.01955. 10.1140/epjc/s10052-019-7429-5

[18] K. Hamilton, A. Karlberg, G.P. Salam, L. Scyboz, R. Verheyen, Soft spin
correlations in final-state parton showers, JHEP 03, 193 (2022), 2111.01161.
10.1007/JHEP03(2022)193

[19] S. Höche, S. Prestel, Triple collinear emissions in parton showers, Phys. Rev. D 96,
074017 (2017), 1705.00742. 10.1103/PhysRevD.96.074017

[20] S. Höche, F. Krauss, S. Prestel, Implementing NLO DGLAP evolution in Parton Show-
ers, JHEP 10, 093 (2017), 1705.00982. 10.1007/JHEP10(2017)093

[21] F. Dulat, S. Höche, S. Prestel, Leading-Color Fully Differential Two-Loop Soft Cor-
rections to QCD Dipole Showers, Phys. Rev. D 98, 074013 (2018), 1805.03757.
10.1103/PhysRevD.98.074013

[22] L. Gellersen, S. Höche, S. Prestel, Disentangling soft and collinear effects in QCD
parton showers, Phys. Rev. D 105, 114012 (2022), 2110.05964. 10.1103/Phys-
RevD.105.114012

[23] S. Ferrario Ravasio, K. Hamilton, A. Karlberg, G.P. Salam, L. Scyboz, G. Soyez, Parton
Showering with Higher Logarithmic Accuracy for Soft Emissions, Phys. Rev. Lett. 131,
161906 (2023), 2307.11142. 10.1103/PhysRevLett.131.161906

[24] M. van Beekveld et al., A new standard for the logarithmic accuracy of parton showers
(2024), 2406.02661.

[25] M. van Beekveld, M. Dasgupta, B.K. El-Menoufi, J. Helliwell, P.F. Monni, G.P. Salam,
A collinear shower algorithm for NSL non-singlet fragmentation (2024), 2409.08316.

[26] S. Höche, D. Reichelt, F. Siegert, Momentum conservation and unitarity in
parton showers and NLL resummation, JHEP 01, 118 (2018), 1711.03497.
10.1007/JHEP01(2018)118

https://doi.org/10.1103/PhysRevD.100.074012
https://doi.org/10.1007/JHEP08(2019)145
https://doi.org/10.1140/epjc/s10052-021-09145-1
https://doi.org/10.1103/PhysRevD.104.034006
https://doi.org/10.1103/PhysRevD.104.034006
https://doi.org/10.1103/PhysRevLett.126.112001
https://doi.org/10.1007/JHEP03(2021)041
https://doi.org/10.1007/JHEP07(2023)126
https://doi.org/10.21468/SciPostPhysProc.15.007
https://doi.org/10.1088/1126-6708/2008/07/025
https://doi.org/10.1140/epjc/s10052-019-7429-5
https://doi.org/10.1007/JHEP03(2022)193
https://doi.org/10.1103/PhysRevD.96.074017
https://doi.org/10.1007/JHEP10(2017)093
https://doi.org/10.1103/PhysRevD.98.074013
https://doi.org/10.1103/PhysRevD.105.114012
https://doi.org/10.1103/PhysRevD.105.114012
https://doi.org/10.1103/PhysRevLett.131.161906
https://doi.org/10.1007/JHEP01(2018)118


[27] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam, Logarithmic accuracy
of parton showers: a fixed-order study, JHEP 09, 033 (2018), [Erratum: JHEP 03, 083
(2020)], 1805.09327. 10.1007/JHEP09(2018)033

[28] Z. Nagy, D.E. Soper, Summations of large logarithms by parton showers, Phys. Rev. D
104, 054049 (2021), 2011.04773. 10.1103/PhysRevD.104.054049

[29] M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam, G. Soyez, Parton
showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125, 052002 (2020),
2002.11114. 10.1103/PhysRevLett.125.052002

[30] J.R. Forshaw, J. Holguin, S. Plätzer, Building a consistent parton shower, JHEP 09, 014
(2020), 2003.06400. 10.1007/JHEP09(2020)014

[31] F. Herren, S. Höche, F. Krauss, D. Reichelt, M. Schoenherr, A new ap-
proach to color-coherent parton evolution, JHEP 10, 091 (2023), 2208.06057.
10.1007/JHEP10(2023)091

[32] M. van Beekveld, S. Ferrario Ravasio, G.P. Salam, A. Soto-Ontoso, G. Soyez, R. Ver-
heyen, PanScales parton showers for hadron collisions: formulation and fixed-order
studies, JHEP 11, 019 (2022), 2205.02237. 10.1007/JHEP11(2022)019

[33] M. van Beekveld, S. Ferrario Ravasio, K. Hamilton, G.P. Salam, A. Soto-Ontoso,
G. Soyez, R. Verheyen, PanScales showers for hadron collisions: all-order validation,
JHEP 11, 020 (2022), 2207.09467. 10.1007/JHEP11(2022)020

[34] S. Höche, F. Krauss, D. Reichelt, The Alaric parton shower for hadron colliders (2024),
2404.14360.

[35] B. Assi, S. Höche, New approach to QCD final-state evolution in processes with
massive partons, Phys. Rev. D 109, 114008 (2024), 2307.00728. 10.1103/Phys-
RevD.109.114008

[36] A. Bassetto, M. Ciafaloni, G. Marchesini, Jet structure and infrared sensitive quantities
in perturbative QCD, Phys. Rept. 100, 201 (1983).

[37] S. Catani, M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO
QCD, Nucl. Phys. B 485, 291 (1997), [Erratum: Nucl.Phys.B 510, 503–504 (1998)],
hep-ph/9605323. 10.1016/S0550-3213(96)00589-5

[38] R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics, Vol. 8, 1st edn. (Cam-
bridge Monogr. Part. Phys. Nucl. Phys. Cosmol., 1996), http://inspirehep.net/
search?j=CMPCE,8,1

[39] B. Webber, Monte Carlo Simulation of Hard Hadronic Processes, Ann. Rev. Nucl. Part.
Sci. 36, 253 (1986).

[40] A. Banfi, G. Corcella, M. Dasgupta, Angular ordering and parton showers for non-
global QCD observables, JHEP 03, 050 (2007), hep-ph/0612282. 10.1088/1126-
6708/2007/03/050

[41] A. Banfi, G.P. Salam, G. Zanderighi, Principles of general final-state resummation and
automated implementation, JHEP 03, 073 (2005), hep-ph/0407286. 10.1088/1126-
6708/2005/03/073

[42] E. Gerwick, S. Höche, S. Marzani, S. Schumann, Soft evolution of multi-jet final states,
JHEP 02, 106 (2015), 1411.7325. 10.1007/JHEP02(2015)106

[43] N. Baberuxki, C.T. Preuss, D. Reichelt, S. Schumann, Resummed predictions for jet-
resolution scales in multijet production in e+e− annihilation, JHEP 04, 112 (2020),
1912.09396. 10.1007/JHEP04(2020)112

[44] E. Bothmann et al. (Sherpa), Event Generation with Sherpa 2.2, SciPost Phys. 7, 034
(2019), 1905.09127. 10.21468/SciPostPhys.7.3.034

[45] E. Bothmann et al., Event generation with Sherpa 3 (2024), 2410.22148.

https://doi.org/10.1007/JHEP09(2018)033
https://doi.org/10.1103/PhysRevD.104.054049
https://doi.org/10.1103/PhysRevLett.125.052002
https://doi.org/10.1007/JHEP09(2020)014
https://doi.org/10.1007/JHEP10(2023)091
https://doi.org/10.1007/JHEP11(2022)019
https://doi.org/10.1007/JHEP11(2022)020
https://doi.org/10.1103/PhysRevD.109.114008
https://doi.org/10.1103/PhysRevD.109.114008
https://doi.org/10.1016/S0550-3213(96)00589-5
http://inspirehep.net/search?j=CMPCE,8,1
http://inspirehep.net/search?j=CMPCE,8,1
https://doi.org/10.1088/1126-6708/2007/03/050
https://doi.org/10.1088/1126-6708/2007/03/050
https://doi.org/10.1088/1126-6708/2005/03/073
https://doi.org/10.1088/1126-6708/2005/03/073
https://doi.org/10.1007/JHEP02(2015)106
https://doi.org/10.1007/JHEP04(2020)112
https://doi.org/10.21468/SciPostPhys.7.3.034


[46] G. Aad et al. (ATLAS), Measurement of Inclusive Jet and Dijet Cross Sections in
Proton-Proton Collisions at 7 TeV Centre-of-Mass Energy with the ATLAS Detector,
Eur. Phys. J. C 71, 1512 (2011), 1009.5908. 10.1140/epjc/s10052-010-1512-2

[47] M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm, JHEP 04, 063
(2008), 0802.1189. 10.1088/1126-6708/2008/04/063

[48] A. Tumasyan et al. (CMS), Study of quark and gluon jet substructure in
Z+jet and dijet events from pp collisions, JHEP 01, 188 (2022), 2109.03340.
10.1007/JHEP01(2022)188

[49] S. Caletti, O. Fedkevych, S. Marzani, D. Reichelt, S. Schumann, G. Soyez,
V. Theeuwes, Jet angularities in Z+jet production at the LHC, JHEP 07, 076 (2021),
2104.06920. 10.1007/JHEP07(2021)076

[50] S. Caletti, O. Fedkevych, S. Marzani, D. Reichelt, Tagging the initial-state gluon, Eur.
Phys. J. C 81, 844 (2021), 2108.10024. 10.1140/epjc/s10052-021-09648-x

[51] D. Reichelt, S. Caletti, O. Fedkevych, S. Marzani, S. Schumann, G. Soyez, Phe-
nomenology of jet angularities at the LHC, JHEP 03, 131 (2022), 2112.09545.
10.1007/JHEP03(2022)131

[52] D. d’Enterria et al., The strong coupling constant: state of the art and the decade ahead,
J. Phys. G 51, 090501 (2024), 2203.08271. 10.1088/1361-6471/ad1a78

[53] J. Baron, D. Reichelt, S. Schumann, N. Schwanemann, V. Theeuwes, Soft-
drop grooming for hadronic event shapes, JHEP 07, 142 (2021), 2012.09574.
10.1007/JHEP07(2021)142

[54] M. Knobbe, F. Krauss, D. Reichelt, S. Schumann, Measuring hadronic Higgs boson
branching ratios at future lepton colliders, Eur. Phys. J. C 84, 83 (2024), 2306.03682.
10.1140/epjc/s10052-024-12430-4

[55] M. Knobbe, D. Reichelt, S. Schumann, (N)NLO+NLL’ accurate predictions for plain
and groomed 1-jettiness in neutral current DIS, JHEP 09, 194 (2023), 2306.17736.
10.1007/JHEP09(2023)194

[56] A.J. Larkoski, S. Marzani, G. Soyez, J. Thaler, Soft Drop, JHEP 05, 146 (2014),
1402.2657. 10.1007/JHEP05(2014)146

[57] S. Marzani, L. Schunk, G. Soyez, A study of jet mass distributions with grooming,
JHEP 07, 132 (2017), 1704.02210. 10.1007/JHEP07(2017)132

[58] S. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes, Fitting the Strong
Coupling Constant with Soft-Drop Thrust, JHEP 11, 179 (2019), 1906.10504.
10.1007/JHEP11(2019)179

[59] A. Kardos, A.J. Larkoski, Z. Trócsányi, Two- and three-loop data for the groomed jet
mass, Phys. Rev. D 101, 114034 (2020), 2002.05730. 10.1103/PhysRevD.101.114034

[60] A. Kardos, A.J. Larkoski, Z. Trócsányi, Groomed jet mass at high precision, Phys. Lett.
B 809, 135704 (2020), 2002.00942. 10.1016/j.physletb.2020.135704

[61] A.J. Larkoski, Improving the understanding of jet grooming in perturbation theory,
JHEP 09, 072 (2020), 2006.14680. 10.1007/JHEP09(2020)072

[62] A. Gehrmann-De Ridder, C.T. Preuss, D. Reichelt, S. Schumann, NLO+NLL’ accurate
predictions for three-jet event shapes in hadronic Higgs decays, JHEP 07, 160 (2024),
2403.06929. 10.1007/JHEP07(2024)160

[63] V. Andreev et al. (H1), Observation and differential cross section measurement of neu-
tral current DIS events with an empty hemisphere in the Breit frame, Eur. Phys. J. C 84,
720 (2024), 2403.08982. 10.1140/epjc/s10052-024-13003-1

[64] V. Andreev et al. (H1), Measurement of the 1-jettiness event shape observable in
deep-inelastic electron-proton scattering at HERA, Eur. Phys. J. C 84, 785 (2024),

https://doi.org/10.1140/epjc/s10052-010-1512-2
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1007/JHEP01(2022)188
https://doi.org/10.1007/JHEP07(2021)076
https://doi.org/10.1140/epjc/s10052-021-09648-x
https://doi.org/10.1007/JHEP03(2022)131
https://doi.org/10.1088/1361-6471/ad1a78
https://doi.org/10.1007/JHEP07(2021)142
https://doi.org/10.1140/epjc/s10052-024-12430-4
https://doi.org/10.1007/JHEP09(2023)194
https://doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.1007/JHEP07(2017)132
https://doi.org/10.1007/JHEP11(2019)179
https://doi.org/10.1103/PhysRevD.101.114034
https://doi.org/10.1016/j.physletb.2020.135704
https://doi.org/10.1007/JHEP09(2020)072
https://doi.org/10.1007/JHEP07(2024)160
https://doi.org/10.1140/epjc/s10052-024-13003-1


2403.10109. 10.1140/epjc/s10052-024-13115-8
[65] V. Andreev et al. (H1), Measurement of groomed event shape observables in deep-

inelastic electron-proton scattering at HERA, Eur. Phys. J. C 84, 718 (2024),
2403.10134. 10.1140/epjc/s10052-024-12987-0

[66] Y.T. Chien, O. Fedkevych, D. Reichelt, S. Schumann, Jet angularities in dijet production
in proton-proton and heavy-ion collisions at RHIC, JHEP 07, 230 (2024), 2404.04168.
10.1007/JHEP07(2024)230

[67] M. Knobbe, D. Reichelt, S. Schumann, L. Stöcker, Precision calculations for groomed
event shapes at HERA, in 31st International Workshop on Deep-Inelastic Scattering
and Related Subjects (2024), 2407.02456

https://doi.org/10.1140/epjc/s10052-024-13115-8
https://doi.org/10.1140/epjc/s10052-024-12987-0
https://doi.org/10.1007/JHEP07(2024)230

	Introduction
	Basics of the A0.8LARIC parton shower algorithm
	Proof of accuracy preserving recoil scheme
	A0.8LARIC for collider phenomenology
	Conclusion and Outlook

