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Abstract. Transformers are one of the recent big achievements of machine
learning, which enables realistic communication on natural language process-
ing such as ChatGPT, as well as being applied to many other fields such as
image processing. The basic concept of the Transformer is to learn relation be-
tween two objects by a self-attention mechanism. This structure is especially
efficient with large input samples and large number of learnable parameters.
We are studying this architecture applied to the particle-flow method, which re-
constructs particles by clustering hits at highly-segmented calorimeters. Using
datasets consisting of one or two initial photons, the network is asked to predict
clusters one by one using hits from the calorimeters as input. Truth clusters
information are provided at learning stage to compare with the decoder output.
The best model reconstructed one photon events with a relative error on the en-
ergy of 5% and direction differing from the ground truth by 2.98 ◦. Moreover,
the model achieved an accuracy of 99.6% when asked to separate one and two
photons events.

This work was carried out in the framework of the ILD Concept Group

1 Introduction

In order to achieve the precision required by the prospective Higgs factories, several de-
signs of detectors with highly granular calorimeters, such as the International Large Detector
(ILD) [1], the Silicon Detector (SiD) [2], the Compact Linear Collider detector (CLICdet)
[3] and the CLIC-Like Detector (CLD) [4], are being developed. To increase the ability of
the calorimeters for separating showers from individual particles, high granularity is thus
optimised for particle reconstruction using Particle Flow Algorithms (PFAs).

In PFAs, charged particles are completely reconstructed using tracker hits information,
whereas photons and other neutral particles are reconstructed by clustering their correspond-
ing hits in the calorimeters. Once this is accomplished, the reconstructed particles can be used
to identify events where a specific reaction occurred, effectively eliminating the background
hits or used in more specialised algorithm such as jet tagging to obtain further information
about the initial particles produced.

Many of the reconstruction algorithms used in experiments, such as ATLAS [5], CMS
[6] and the International Linear Collider (ILC) with PandoraPFA [7], are based on explicitly
instructed routine. However, in recent years, machine learning has started to be used exten-
sively in particle physics for various tasks such as track reconstruction, jet clustering and



tagging [8–10] and in particular, to develop PFAs [11–13] in the hope of developing a more
computationally efficient and accurate program for event reconstruction.

In this work, an implementation in PyTorch’s framework of a PFA using a neural network
called a transformer is presented. Although first used in language models for translation tasks
[14], transformers and their variants have also found applications in particle physics including
jet tagging [15], density estimation [16] and particle reconstruction [17, 18].

2 Datasets and input features

2.1 Dataset generation and input features

Raw dataset generation

The datasets are generated using the ILD full simulation software ilcsoft v02-03-01 with
geometry ILD_l5_o1_v02 [1]. Thus each event in the raw datasets consists of hits from
the detectors, referred to as feats and their associated Monte Carlo truth particles (MCTruth
particles), referred to as labels or clusters.

Entries selection and preprocessing

Each hit is characterised by a vector of the form (log10 Eh, x, y, z) where Eh is the energy
deposit of the hit, and (x, y, z), its position in the calorimeter. A MCTruth particle is a vector
of the form (C, |id|, log10 Ec, nx, ny, nz), where C is its charge, |id| the absolute value of its
PDG number [19], Ec its energy and (nx, ny, nz) = n its momentum at the point of interaction
normalised such that n2 = 1. The energy and the position of the hits as well as the energy of
the labels are normalised over the entire set of generated events according to,
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with f , an entry to be normalised, N the total number of hits or labels and i running over
the entire set of hits or labels. Moreover, clusters are sorted by descending energy order and
those whose energy is lower than 100 MeV are discarded.

2.2 Datasets

Single photon dataset:

This dataset is obtained by simulating a single initial photon passing through the detectors.
Its energy follows a logarithmic distribution between 10 and 100 GeV. The direction from the
point of interaction is random and 100 k events were simulated. 80% of the dataset is used
for the training set, another 10% for the validation set and the last 10% for the test set.

Due to interactions between the incoming particles and the detectors, pairs of parti-
cle/antiparticles generation and other radiations can occur. Some events thus contain more
than one MCTruth particle and not necessarily only photons or electrons, therefore affecting
the performance of the model. In order to maximise the energy and direction measurement
accuracy, only events containing a single photon were selected forming true single photons
events.



Double photons dataset:

This dataset is obtained by simulating two photons passing through the detectors. As in the
previous dataset, their energy follow a logarithmic distribution between 10 and 100 GeV and
their direction from the point of interaction are random. 100 k events were simulated. Again,
80% forms the training set and the 20% left is shared equally between the validation and
the test set. Furthermore, physical interactions can produce other particles leading to several
MCTruth particles other than photons.

Mix true single photon - true double photons:

This dataset was created from the datasets containing one and two photons events. Both
datasets were mixed together and randomised to create a new dataset of approximately 50%
of true single photon events and 50% of true double photons events.

3 Network architecture

3.1 Embedders

Although in machine translation the embedder for the input of the encoder can be the same
as for the decoder, it is not possible in this case, since processed feats and labels do not have
the same dimensions, nor contain the same kind of information. Therefore, two embedders
are created as two different instances of the same Embedder class.

The Embedder class implements a plain Feed Forward Network (FFN) with a variable
number of layers, chosen by the user. At each layer, Rectified Linear Unit (ReLU) is used as
an activation function. If the embedder consists of only one layer, the linear transformation
is a map from Rn → Rdmodel , where n and dmodel are the dimensions of the input and output
vectors respectively. Otherwise, the first layer is changed from being a map from Rn →

Rdmodel , to a map Rn → Rd f f , where d f f is a hyperparameter, usually chosen as 2dmodel. The
following layers are maps from Rd f f → Rd f f , except for the last one, for which it has to be
Rd f f → Rdmodel .

Once feats and labels have gone through their associated embedders, they are sent to the
encoder and decoder respectively.

3.2 General architecture

In the original architecture presented in [14], transformers are used for machine translation.
The original sentence is first split into smaller parts called tokens. Each token is associated
to a unique integer, before being embedded in a higher dimensional vector. Two additional
tokens are inserted at the beginning and end of the sequence. The correspondence between
tokens and integer forms a vocabulary of length d. From the embedding of the tokens, the
model translates the sentence by predicting the translated tokens sequentially. At each itera-
tion, the model reuses both the original sentence and the tokens already predicted to produce
a d-dimensional vector called the logits, whose entries can be normalised using the softmax
function, defined as

softmax(xi) =
xi∑d

j=1 x j
. (2)

Each entry i is then interpreted as the probability that the token associated to the integer i in
the vocabulary is next. The predictions stop when the model predicts the token used to mark
the end of the sequence.



The network architecture used in this work is built in complete analogy. Instead of pro-
ducing a single vector to predict the next token, the model produced four different outputs
to predict the next charge, PDG, energy and direction as well as the next class, used to dis-
tinguish between special tokens and hits/labels. Individual vocabularies are constructed for
each discrete degree of freedom (DOF).

The beginning and end of each event are marked by a bos and eos token respectively,
whilst pad tokens are used to pad all events to the same length. Hits/labels are distinguished
from other special tokens by adding an extra dimension to their vector, whose last entry is
set to 3. The other special tokens are constructed as vectors of the same dimension as the
hits/labels and of the form (0,. . . , 0, s), with s equal to 0 for pad tokens, 1 for bos and
2 for eos. The set {0,1,2,3} forms the vocabulary for the class of token. Furthermore,
two additional vocabularies are obtained by sorting in ascending order the unique values
of charges and PDGs found in the dataset and associating them to integers starting from 1
onwards. In these two vocabularies the value 0 is given to all special tokens.

As illustrated in Figure 1, both hits and labels first go through the preprocessing phase,
described in section 2.1, before being embedded in a higher dimensional space by the em-
bedders. The embedding of the hits are fed to the encoder and the embedding of the labels
to the decoder. The output of the encoder supplies the keys and values for the second layer
of multi-head attention in the decoder. The final output of the decoder is acted upon by four
linear transformations, fC , fP, fT and fE , to produce the logits corresponding to the charge,
PDG, class and continuous DOFs (energy and direction) respectively. For fC , fP and fT , their
outputs are interpreted as the unnormalised probabilities that the quantity associated to the
index i in the vocabulary is next, such that fC : Rdmodel → RlC and fP : Rdmodel → RlP , where
lC/P are the lengths of the charge/PDGs vocabularies and lastly, fT : Rdmodel → R4. During
training, these outputs are compared to the ground truth using PyTorch’s CrossEntropyLoss
function, ignoring the padding tokens.

Figure 1. Architecture of the neural network.



As the vector for the cluster direction should be normalised to 1, fE is defined as a map
fE : Rdmodel → R3, with the first entry of its output interpreted as the normalised log base
10 of the energy, and the two others as the cluster direction angles θ and ϕ respectively. In
order to avoid problems from the non-periodicity of the Mean Squared Error (MSE) loss
function, these angles are converted to 3D cartesian coordinates, which are then compared to
the ground truth.

4 Results and discussion

From the predictions obtained by running inference on the test set with the trained model,
different quantities were computed to assess the model performance by establishing a one-
to-one correspondence between the overlapping sample tokens present in the predictions and
labels. If pi j is a predicted entry for the event i and cluster j, then it will be compared with li j,
if it exists, which is the same entry but corresponding to the jth truth cluster in event i. Since
the number of predicted clusters can be either smaller, equal or larger than the true number
of clusters, this correspondence imposes constraints j, whose maximum value is therefore
defined as

ji,max = min(nip, nil), (3)

Where nip and nil are the predicted number of clusters for event i in the predictions and labels
respectively. This is justified as the clusters in the labels are sorted in order of descending
energy. Note that before establishing this correspondence, the special tokens were already
filtered out for both predictions and labels.

From this one-to-one correspondence, several quantities are computed to assess the model
performance. The charges and PDGs accuracies for one event are computed by attributing
a value of 1 to a pair prediction-label if they have the same charge/PDG and 0 otherwise.
Both accuracies are then obtained by summing over these binary values and dividing by
the number of pairs in the event. The excess of number of predictions is computed as the
difference nip − nil. A positive number therefore indicates that the model has predicted more
clusters than what was contained in the labels. Energy accuracy is computed as the absolute
relative error between the predicted value and truth. Lastly, the angle θ represents the angle
separating the predicted direction and the truth. Its cosine value is directly obtained from the
vectors scalar product, since their norm is normalised to 1.

The ADAM optimiser [20] and a constant learning rate of 10−4 were used for training.
Both embedders had one hidden layer with d f f = 2dmodel and a final size of dmodel. The FFNs
in the transformer were constructed from one hidden layer of dimension d f f and the size of
their final output was set to dmodel. Moreover, the four individual losses are summed to form
the total loss with weights shared between them according to two scenarios. To improve
performance on the prediction of the right number of clusters, a weight of 0.7 is given to
the loss associated to the prediction of the class of token. The remaining 0.3 is then shared
equally between three other losses. This scenario is later on referred to as the 70% tokens
loss function. In the case of the 70% continuous loss function, it is the loss associated to
the continuous DOFs that is summed with a weight of 0.7 whilst the remaining 0.3 is shared
equally between the other losses. As the events used for training contained only photons,
charges and PDGs accuracies are not discussed in the following.

4.1 True single photon events

The best performances were obtained for dmodel = 64, with a relative error on the energy for
the token and continuous losses of 9.7 % and 5 % respectively. Moreover, a mean 3D angle
for the token and continuous losses of 4.08 ◦ and 2.98 ◦ were obtained respectively.



In Figure 2 are shown the relative error on the energy for the predictions obtained with the
70% continuous loss function and classified according to the energy range in which the label
is. Indeed, the energy given in the hits is the one as provided by the detector and therefore
comes with uncertainty. In other words, taken in their raw forms, a simple addition of all
the energy of the hits would not give the same result as the one provided in the labels. The
main source for this uncertainty is the intrinsic resolution of the detector, σ, defined as the
one-sigma deviation from the true energy of the particle:

σ ∼
1
√

E
, (4)

with E the energy of the incoming particle. From these considerations, it is expected that pho-
tons in the 20-50 GeV range would suffer from larger uncertainty leading to a worse recon-
struction by the network and thus a higher RMS value. Inversely, photons in the 50-100 GeV
range are expected to suffer less from this uncertainty and therefore be better reconstructed.
The mean, RMS value and number of events for each category of energy range are sum-

Figure 2. Relative error on the energy computed using predictions from a network with dmodel = 64
trained on true single photon events and classified by energy range A) 10-20 GeV B) 20-50 GeV and
C) 50-100 GeV.

marised in Table 1. At first, Figure 2 and Table 1 seem to suggest that both the mean and
the RMS values of the 50-100 GeV range are worse than the 20-50 GeV range. Since the en-
ergy distribution follows a logarithmic distribution, the higher the energy, the rarer the event,
which could indicate that the range 50-100 GeV is underrepresented in the dataset, decreas-
ing the ability of the model to predict the correct energy. Although accounting for 50% of the
energy range, the 50-100 GeV range represents only 29% of the total number of events. This
can be easily tested by training the model on a smaller fraction of the dataset.



Table 1. Mean and RMS values of the distribution of the relative error on the energy, computed on
three energy ranges. Models trained on true single photon events, with 70% of the total loss on

continuous DOFs.

Energy Range [GeV] Mean [%] RMS [%] events
10-20 2.25 10.18 2714
20-50 1.83 6.05 3501

50-100 2.45 6.20 2540

On the other hand, the evolution of the difference in log values between the predictions
and labels plotted as a function of the label energy in Figure 3 seems to suggest that the wors-
ening of the mean and the RMS present in Table 1 take their roots not in a general worsening
of the predictions of the model but rather to a moving bias with a relatively small RMS value.
Whereas a higher bias could be linked to the higher energies being less represented in the
dataset, it is more difficult to attribute the lower RMS value to a better reconstruction, due
to the presence of bias and the small number of events which could create the illusion of a
smaller RMS. This logarithmic distribution of the energy was chosen to reflect physical dis-

Figure 3. Difference in log values of predicted and label energies as a function of the log value of
the label energy. Models trained on true single photon events with 70% of the total loss weight on the
continuous DOFs loss function.

tributions, however taking the previous considerations into account, generating datasets with
a uniform energy distribution could be used to improve energy accuracy at higher energies.

4.2 Mix true single photon - true double photons

The objective is to observe whether the model is capable of distinguishing one particle events
from two particles events. Six models with embedding sizes dmodel = 64, 128 and 256 (two
models of each) were created. The first model of each size was trained in the 70% continuous
loss function scenario, whereas the second model was trained in the 70% tokens loss func-
tion. The performance of the models was assessed by constructing the matrices illustrated on
Figure 4 for the 70% tokens loss function and Figure 5 for the 70% continuous loss function.
The columns of the matrices represent the number of clusters predicted by the labels. The
rows are the number of clusters in the labels. Thus, the entry on the first column and first row
represents the number of events for which the model correctly predicted one cluster. On the
second column on the same row are shown the number of events for which the model pre-
dicted incorrectly two clusters. Lastly, on the third column are given the number of events for



which the model predicted a number of clusters either smaller than 1 (predicting an eos to-
ken directly) or larger than 2. The second row is constructed analogously but by considering
events containing two clusters in the labels.

Figure 4. Classifications of the number of events depending on the number of clusters contained in the
labels and the number predicted by the models, obtained for the 70% tokens loss and with dmodel = A)
64 B) 128 and C) 256. Models trained on a mix of true single and true double photons events.

Figure 5. Classifications of the number of events depending on the number of clusters contained in the
labels and the number predicted by the models, obtained for the 70% continuous loss and with dmodel =

A) 64 B) 128 and C) 256. Models trained on a mix of true single and true double photons events.

All models were able to distinguish between one or two particles events with high ac-
curacy, with the best accuracy obtained for both loss functions for dmodel = 128 at 98.2%
for continuous and 99.6% in the tokens case, therefore bringing a significant improvement.
Moreover, most of the incorrect predictions were obtained for a number of labels clusters of
2, with the highest values obtained for a prediction of one cluster instead of two. This is
probably due to the fact that in some events, the two clusters are too close to each other to be
distinguished by the model.

To measure the ability to distinguish between two close-by clusters, the model obtained
for dmodel = 128 with the tokens loss function was used for inference on a dataset containing
true double photons whose directions differ by an angle of 100 mrad. The model predicted the
two expected clusters in 11.4% of events, with the rest of the predictions being one cluster.
In retrospect, such a low accuracy compared to the previous results is not a surprise. Indeed,
the average angle accuracy computed for this model on the mixed dataset is 8.64 ◦, which
exceeds the 100 mrad = 5.72 ◦. For the energy, the mean relative error is 9.1%. The best
model for the continuous loss achieved a mean angle of 8.16 ◦ and mean relative error on the



energy of 11.8%. This seems to suggest that the predictions of the directions and energy are
still somewhat disconnected from the clustering process.

Overall, these results show that clustering from the transformer is possible in this simple
scenario, although more precision is still required to resolve correctly clusters close to each
other.

5 Conclusion

This work presented basic implementations of a transformer as a Particle Flow Algorithm
using PyTorch’s framework, built in complete analogy with the original transformer architec-
ture. The objective was to predict sequentially the visible particles by feeding the network
with hits’ energy and position from the calorimeters. The input was embedded into higher di-
mensional vectors by fully connected FFNs before being used as an input to the transformer.
To differentiate input data from special tokens used either for indicating the beginning or end
of the sequence, or just as padding, an additional integer was added to the tokens initial rep-
resentation. Labels were characterised by the charge of the cluster, the absolute value of the
particle ID, and continuous DOFs: its energy and direction.

The performance for the energy accuracy showed relatively high bias and variance for
models trained on true single photon events, especially at higher energies. It is possible that
this stems from the higher energy events being underrepresented in the dataset.

In parallel, the clustering ability of the network was tested by constructing a dataset con-
sisting of a mix of true single photon and true double photon events. The best model was able
to predict the correct number of clusters in 99.6% of the cases. Nonetheless, since energy and
angle accuracy are relatively biased (9.1% and 8.16 ◦ resp.), this suggests that the clustering
process is still disconnected from the way the model predicts the energy and direction of the
cluster. Moreover, two clusters resolution is still limited, with the model being able to resolve
showers separated by an angle of 100 mrad in only 11.4% of the cases.

The fact that energy and angle accuracy seems to be disconnected from the clustering pro-
cess as well as the apparent ineffectiveness of supplied track information could point towards
a problem of hidden representation between the hits and labels. For the attention mechanism
to make sense, the embedding for both keys and queries needs to be such that it results in
a meaningful scalar-product. In the hope to construct a common embedding space between
labels and memory, the encoder could be pre-trained to predict the number of clusters using
a similar architecture as detailed in [21].
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