
Application of Particle Transformer to quark flavor tagging
in the ILC project

Risako Tagami1,, Taikan Suehara, and Masaya Ishino
1rtagami@icepp.s.u-tokyo.ac.jp

Abstract. International Linear Collider (ILC) is a next-generation e+e− linear
collider to explore Beyond-Standard-Models by precise measurements of Higgs
bosons. Jet flavor tagging plays a vital role in the ILC project by identification of
H → bb̄, cc̄, gg, ss̄ to measure Higgs coupling constants and of HH → bb̄bb̄
and bb̄WW which are the main channels to measure the Higgs self-coupling
constant.
Jet flavor tagging relies on a large amount of jet information such as particle mo-
menta, energies, and impact parameters, obtained from trajectories of particles
within a jet. Since jet flavor tagging is a classification task based on massive
amounts of information, machine learning techniques have been utilized for
faster and more efficient analysis for the last several decades.
Particle Transformer (ParT) is a machine learning model based on Transformer
architecture developed for jet analysis, including jet flavor tagging. In this study,
we apply ParT to ILD full simulation data to improve the efficiency of jet flavor
tagging.
Our research focused on evaluating the performance of ParT compared to that
of the previously used flavor tagging software, LCFIPlus. We will also report
the status of the performance of strange tagging on ILD full simulation dataset
using ParT, which can be applied to the analysis of Higgs-strange coupling.

1 Introduction

After∗ the discovery of the Higgs boson, the search for beyond the Standard Model through
precise measurement of Higgs has been expected. There is a consensus among particle physi-
cists to build Higgs Factories as the next-generation accelerator. There are several e+e− Higgs
Factories currently under consideration. ILC project is one of the Higgs Factory projects.

With more precise measurements of Higgs, the effects of SUSY and other new TeV
physics models can be seen. For instance, if there is a new physics phenomenon at 1 TeV, the
offset from the Standard Model will be about 6 % so that accuracy of about 1 % will be re-
quired. In the ILC project, the accuracy of H → bb̄ measurements is expected to be∼ 1%. For
precise measurements of Higgs, especially Higgs coupling constants of H → bb̄, cc̄, gg, ss̄,
the performance of flavor tagging should be improved.

Jet flavor tagging is a classification task using the information of each jet such as im-
pact parameters of tracks and number of vertices. Bottom jets have two secondary vertices,
whereas charm jets have one secondary vertex. Strange jets have more strange hadron like

∗This work was carried out in the framework of the ILD Concept Group.



Kaon, whereas light jets have less. Those differences between jets should be detected by jet
flavor tagging.

In ILC or CLIC studies, LCFIPlus[1] has been used for flavor tagging. This is a flavor
tagging software using machine learning technique of boosted decision tree (BDT) classifi-
cation. Recently, a research group in CERN presented a new model for flavor tagging called
ParticleNet[2] using Graph Neural Network (GNN) model. As below, ParticleNet achieved
better performance[3] than LCFIPlus, although there are differences between them in terms
of the datasets used and their detectors (ILC and FCC-ee).

Table 1. The comparison of the performance of b-jet flavor tagging between using LCFIPlus for ILD
full simulation dataset and using ParticleNet for FCC-ee fast simulation dataset.

b-tag 80% efficiency
Method c-bkg acceptance uds-bkg acceptance

LCFIPlus 6.3 % 0.79 %
ParticleNet 0.40 % < 0.01 %

Lately, Particle Transformer (ParT)[4] has been applied to LHC fast simulation data. The
performance of event tagging of fast simulation dataset (JetClass[4]) has been greatly im-
proved by using ParT. In this study, we apply ParT to ILD full simulation dataset to aim at
improving the performance of flavor tagging.

2 Flavor tagging of ILD full simulation dataset using ParT

2.1 Dataset

In this study, the full detector simulation events for International Large Detector (ILD)[5],
one of the ILC detector concepts, are utilized. The ILD has trackers and calorimeters. The
trackers consist of silicon vertex detector, silicon inner and outer tracker and main Time Pro-
jection Chamber (TPC) at barrel region, while silicon-only tracking at forward region. The
calorimeters consist of electromagnetic calorimeter which is composed of tungsten absorber
and highly-granular silicon pad sensors with cell size of 5 × 5 mm2, and hadron calorimeter
which is composed of steel absorber and scintillator tile sensors with 3 × 3 cm2 cells. End-
cap and forward calorimeters are also highly segmented with similar configurations. Outside
the hadron calorimeter, superconducting solenoid with 3.5 Tesla magnetic field and muon
detector as well as return yoke are equipped in this order.

The software framework (iLCSoft) consists of Geant4 based detector simulation with the
ILD detector setup (DDsim), digitizer of trackers and calorimeter hits emulating detector ef-
fects and a tracking software as low-level reconstruction. For the reconstruction of particles
and jets, standard Particle Flow Algorithm (PandoraPFA) and Durham jet clustering algo-
rithm are utilized, respectively. Particles inside each jet are used to produce input variables
for the flavor tagging network.

The samples used in this study are e+e− → qq̄ events at 91 GeV center-of-mass energy
(fixed energy), 1M jets in total and e+e− → ZH → νν̄qq̄ at 250 GeV (variable energy, their
average is ∼ 60 GeV), 1M jets in total.

They are divided into training samples (85%), validation samples (5%) and test samples
(15%).

2.2 Model

The architecture of ParT is as Figure 1.



Figure 1. The architecture of Particle Transformer’s model. The original image is from [4].

The basic structure of ParT is same as Transformer. The difference between standard
Transformer and ParT is that ParT has "interactions." Several physical variables are calculated
by forming pairs of tracks within jets using their four-momenta and added as bias in the
middle of self-attention.

2.3 Input variables

Input variables (features and interactions) are listed in Table 2 and Table 3.

2.4 Result

Performance of three category (b, c, d) flavor tagging on ILD full simulation dataset (at 91
GeV) using ParT is evaluated and compared to the performance using LCFIPlus, and the
results are summarized in Table 4.

The ParT model is modified to adjust to the ILD full simulation dataset. For instance,
features are separated into tracks and neutrals before embedding (linear, Gaussian Error Lin-
ear Unit (GELU) activation function) and combined before self-attention block, and several
variables of features are standardized by sigmoid function before training. The performance
on ILD full simulation dataset (at 250 GeV) with those modification is also listed on the Table
4.

The performance of b-tagging and c-tagging is greatly improved by using ParT, about 4.8
times in c-background acceptance of b-tagging. We also achieved a ∼ 2.7 times improvement
in performance with the modifications. It was found that ParT is also effective for ILD full
simulation dataset.

3 Strange tagging

We also report current status of strange jet tagging of ILD full simulation dataset using ParT.



Table 2. Input variables (features).

Category Variable definition
Impact Parameter d0 transverse impact parameter value

z0 longitudinal impact parameter value
ip2D 2D impact parameter value
ip3D 3D impact parameter value

Jet Distance d j
displacement of tracks from the line

passing interaction point with direction of their jets
Particle ID Muon if the particle is a muon (|pid| == 13)

Electron if the particle is an electron (|pid| == 11)
Gamma if the particle is a gamma (|pid| == 22)

Charged Hadron if the particle is a charged hadron
Neutral Hadron if the particle is a neutral hadron

type PDG ID reconstructed by each Particle ID
Kinematic Charge electric charge of the particle

log E
Ejet

logarithm of the particle’s energy relative to the jet energy
∆θ θtrack − θjet
∆ϕ ϕtrack − ϕjet

Track Errors σ each element of covariant matrix
* Impact parameter, Jet Distance and Track Errors are only valid for charged particles. They are set

to be -9 for neutral particles to fill in the input data.

Table 3. Input variables (interactions). i and j each represent one of a pair of particles.

Variable definition
log (∆R) logarithm of

√
(ηi − η j)2 + ((ϕi − ϕ j + π)%(2π) − π)2

log (kt) logarithm of sin θi j ∗ pmin (pmin = min(pi, p j))

log (z) logarithm of pT
min

pt
i+pT

j
(pT

min = min(pT
i , pT

j ))

log (inv.mass) logarithm of invariant mass

Table 4. The performances of b-tagging and c-tagging. In the top row and the bottom of the table, ILD
full simulation dataset (at 250 GeV, 1M jets) is used, while in the middle row, ILD full simulation

dataset (at 91 GeV, 1M jets) is used.

b-tag 80% efficiency c-tag 50% efficiency

Method
c-bkg
acceptance

d-bkg
acceptance

b-bkg
acceptance

d-bkg
acceptance

LCFIPlus (at 250 GeV) 6.3 % 0.79 % 7.4 % 1.2 %
ParT (at 91 GeV) 1.3 % 0.25 % 1.0 % 0.43 %

ParT (at 250 GeV, modified) 0.48 % 0.14 % 0.86 % 0.34 %

There are only slight differences in kinematics between strange jet and light jets. Their
main difference is the ratio of each particle in jets shown in Table 5. In strange jets, there are
more strange hadrons like Kaon.

It is common to use particle identification (ID) of particles in jets for tagging strange
jets. We use a new particle ID module called Comprehensive PID (CPID)[6] to improve the
performance of strange tagging. With CPID, particles are split by momentum range of 1-100
GeV into 12 momentum bins and their IDs are determined by BDT with the information



Table 5. The ratios of track particles with momenta bigger than 5 GeV.

Particle H → ss̄ H → gg H → dd̄
Kaon 27.1 % 16.2 % 10.7 %
Pion 63.1 % 69.2 % 79.2 %

Proton 7.2 % 11.5 % 7.1 %
Electron 2.1 % 2.3 % 2.5 %
Muon 0.4 % 0.9 % 0.4 %

of reconstructed particle including time of flights and dE/dx. As a result, we can obtain
particle’s probabilities for each species ; kaon, pion, proton, electron and muon. The accuracy
of particle ID obtained by CPID is as Table 6. The dataset used is ILD full simulation dataset
at 250 GeV with 1M jets.

Table 6. Accuracy rate of CPID in H → ss̄ events with momenta bigger than 5 GeV. Accuracy is
defined by the proportion of tracks that CPID (made into 0 or 1 by setting the probability of the Kaon,
Pion, Proton, Electron and Muon such that the highest value is 1, and the others are 0) and truth match.

Particle Accuracy
Kaon 0.74
Pion 0.89

Proton 0.76
Electron 0.38
Muon 0.40

We use CPID scores of those five particles and also usual inputs in Table 2 and Table 3
for strange tagging. The current performance of strange tagging is as Figure 2.

Figure 2. The performances of strange tagging of ILD full simulation dataset (at 250 GeV, 1M jets)
using ParT. Six category (b, c, d, g, u, s) flavor tagging was performed. Blue line is g-background
acceptance, and red line is d-background acceptance.

The g-background acceptance in s-tagging 80% efficiency is 25.7% and the d-background
acceptance in s-tagging 80% efficiency is 42.7%. The performance of strange tagging on ILD



full simulation dataset is lower than that on FCC-ee dataset, but they are different in terms
of their detectors and fast/full simulation. The difference of performance is currently under
investigation.

4 Discussion and Conclusion

Particle Transformer is also effective for b, c jet flavor tagging on ILD full simulation dataset.
The performance of b-tagging (c-background) with ParT is about five times better than with
LCFIPlus, and c-background acceptance is 0.48% with b-tagging 80% efficiency.

Strange jet tagging with ParT using Comprehensive PID is also performed. The perfor-
mance of s-tagging 80% efficiency (g-background) is about 25%. We will try to improve the
performance, using CPID for particles with their momenta less than 1 GeV.
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