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Abstract. We discuss a new renormalization scheme for mixing angles in ex-
tended Higgs sectors for the coming era of the Higgs precise measurements at
future lepton colliders. We focus on the two Higgs doublet models (2HDMs)
with a softly-broken Z2 symmetry as a simple and important example, in which
two mixing angles α and β appear in the Higgs sector. In this new scheme, the
counterterms for two mixing angles δα and δβ are determined by requiring that
deviations in the decay rates of h → ZZ∗ → Zℓ+ℓ− and h → ττ from the corre-
sponding predictions in the standard model at NLO are given by the square of
the scaling factor at tree level. We show how this scheme works in the 2HDMs,
and demonstrate how the other decay rates (e.g., h → WW∗, h → bb̄, etc.) are
predicted at NLO.

1 Introduction

Precise measurements of the properties of the discovered Higgs boson provide a quite impor-
tant and robust way to indirectly search for new physics beyond the Standard Model (SM).
Namely, effects of new physics can appear via deviations in Higgs observables from the SM
predictions, e.g., production cross sections, decay branching ratios, and their patterns and
magnitudes strongly depend on new physics scenarios. Such deviations can be observed
at future Higgs factories, e.g., the International Linear Collider (ILC) [1–4], the Circular
Electron-Positron Collider (CEPC) [5], the Future Circular Collider (FCC-ee) [6] and the
Compact LInear Collider (CLIC) [7]. Therefore, it is necessary to calculate the Higgs prop-
erties with an accuracy equal to or better than that expected in these experiments, typically
better than 1% level, so that radiative corrections have to be included in the calculation.

There are basically two sources which induce deviations in the Higgs properties, i.e.,
scalar mixings at tree level and radiative corrections. The former can simply be described
in terms of the so-called scaling factors κX which represent the value of the Higgs boson
coupling normalized by the corresponding SM prediction, and are expressed by the mixing
angles. Thus, the mixing angles play a role to describe the “alignmentness” at tree level, i.e.,
how the Higgs properties are close to those of the SM Higgs boson. The situation, however,
can drastically be changed when we consider radiative corrections to the Higgs properties,
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because other model parameters can also enter into the predictions. Therefore, the mixing
parameters no longer describe the alignmentness at loop levels.

In this presentation, we propose a new renormalization scheme for the mixing parameters
such that they still describe the alignmentness at loop levels, based on the recent paper [8].
As a simple and important example, we discuss the two Higgs doublet models (2HDMs) with
a softly-broken Z2 symmetry in order to show how our scheme works in a concrete way.

2 2HDMs

We briefly review the 2HDMs with a softly-broken Z2 symmetry to avoid flavor chang-
ing neutral currents at tree level, under which two doublets Φ1 and Φ2 are transformed as
(Φ1,Φ2)→ (Φ1,−Φ2).

The Higgs potential is generally given by
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where m2
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In the above expression, H±, A and h′a (a = 1, 2) respectively represent the physical singly-
charged, CP-odd and CP-even Higgs bosons, while G± (G0) are the Nambu-Goldstone (NG)
bosons absorbed into the longitudinal components of the W± (Z) bosons. The Vacuum Expec-

tation Value (VEV) v is related to the Fermi constant GF via v ≡
√
v21 + v

2
2 = (
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246 GeV. The two CP-even Higgs bosons are mixed with each other, and their mass eigen-
states can be defined as (
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with h being identified with the discovered Higgs boson.
After solving the stationary conditions, we obtain the masses of physical Higgs bosons as
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2
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where M2 ≡ m2
3/(sin β cos β), and the squared mass matrix for the CP-even Higgs bosons is

given in the Higgs basis (h′1, h
′
2) as
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Table 1. ζ f factors in different types of the Yukawa interaction.

ζu ζd ζe
Type-I cot β cot β cot β
Type-II cot β − tan β − tan β
Type-X (Lepton specific) cot β cot β − tan β
Type-Y (Flipped) cot β − tan β cot β

where λ345 ≡ λ3 + λ4 + λ5 with cθ ≡ cos θ, sθ ≡ sin θ and tθ ≡ tan θ. The mass eigenvalues
and the mixing angle are then expressed by

m2
H =M11 c2

β−α +M22 s2
β−α −M12 s2(β−α), (7)

m2
h =M11 s2

β−α +M22 c2
β−α +M12 s2(β−α), (8)

tan 2(β − α) =
2M12

M22 −M11
. (9)

It is clear that the limit M2 → ∞ corresponds to the decoupling limit, where all the masses
of the additional Higgs bosons become infinity, and only the h state stays at the electroweak
scale. In this limit, the alignment limit sβ−α → 1 is also realized, because the off-diagonal
element of the mass matrix (6), determined by v2, is negligibly small as compared with the
(2,2) element. We note that inverse of this statement is not true in general, because the
alignment limit sβ−α → 1 can be taken by choosing the off-diagonal element of (6) to be very
small regardless the value of M2. In particular, the so-called alignment without decoupling,
M2 ≃ O(v2) with sβ−α ≃ 1 are well motivated for various new physics scenarios such as the
electroweak baryogenesis, see e.g., [9–11].

The Yukawa interactions are expressed in the Higgs basis as
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√
2
v
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+ h.c., (10)

where M f ( f = u, d, e) are the diagonalized mass matrices for fermions, Φ̃(′) = iτ2Φ
(′)∗ and ζ f

are the flavor universal parameters depending on the four types of Yukawa interactions [12–
14] as shown in Tab. 1.

3 New renormalization scheme

We here discuss the essence of our new scheme. See Ref. [8] for more detailed discussions.
We first shift all the parameters in the Higgs potential as

v→ v + δv,

m2
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2
φ (φ = h, H, A, H±),

M2 → M2 + δM2,

α→ α + δα, β→ β + δβ. (11)

The tadpole counterterm can also be introduced, and we here apply the alternative tadpole
scheme [15, 16], i.e., instead of introducing the tadpole counterterms, we add the tadpole
inserted diagrams into the one-particle irreducible diagrams. Next, we shift the wavefunctions
of the scalar states as(

H
h

)
→ Zeven

(
H
h

)
,

(
G0

A

)
→ Zodd

(
G0

A

)
,

(
G±

H±

)
→ Z±

(
G±

H±

)
, (12)



where Zeven, Zodd and Z± are 2 × 2 matrices for the wavefunction renormalization, and each
of them is expressed as Zeven = I2×2 +

1
2δZeven and similar for the CP-odd and charged states.

From Eqs. (11) and (12), we introduced 20 counterterms.
The renormalized scalar two-point functions are then expressed as

Π̂i j(p2) = Πi j(p2) + (p2 − m2
i )
δZi j

2
+ (p2 − m2

j )
δZ ji

2
− δi jδm2

i , (13)

where the indices i and j represent all the possible scalar states including NG bosons, and Πi j

are the unrenormalized two-point functions for the external i– j state (Πi j = Π ji are satisfied
for i , j, and thus Π̂i j = Π̂ ji). There are three different Π̂i j functions for each CP-even,
CP-odd and charged scalar sectors, e.g., for the CP-even sector, we have (i, j) = (H,H), (h, h)
and (H, h), and δZi j should be understood as (δZeven)i j. We note that the mass counterterms
δm2

i are zero for the NG bosons.
In order to determine these counterterms, we impose the following on-shell renormaliza-

tion conditions:
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where m2
i = 0 for the NG bosons. We note that the left equation for the NG bosons, i.e., i =

G± and G0 at p2 = 0 is automatically satisfied, so that it does not determine any counterterms.
Thus, 16 counterterms are determined by imposing the above three conditions as follows:

δm2
i = Πii(m2

i ) (i , G±, G0), δZii = −
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2
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j

Πi j(m2
j ). (15)

As we have introduced 20 counterterms, 4 counterterms are not determined at this stage. We
can determine δv by using the renormalization in the electroweak sector as in the SM [17].
For δM2, we can impose the MS scheme such that the ultra-violet divergent part of the hhh
vertex is cancelled at one-loop level [18].

We still have two unrenormalized counterterms, i.e., δα and δβ. In Ref. [18] (we call it as
the KOSY scheme), these mixing counterterms are determined by demanding

δα =
1
4

(δZhH − δZHh), δβ =
1
4

(δZAG0 − δZG0A). (16)

These determinations are eventually the same as those proposed in Ref. [19] in models with
scalar mixings, which have been obtained by the analogy to the method proposed by Denner
and Sack [20] for determining the quark-mixing matrix.∗

We require the following renormalization conditions to determine δα and δβ:

Γ(h→ Zℓℓ̄)NLO = (κV )2 × Γ(h→ Zℓℓ̄)SM
NLO, (17)

Γ(h→ ττ̄)NLO = (κτ)2 × Γ(h→ ττ̄)SM
NLO, (18)

where Γ(h → Zℓℓ̄)NLO and Γ(h → ττ̄)NLO are the decay rates of h → ZZ∗ → Zℓ+ℓ− and
h→ τ+τ− at NLO in the 2HDMs, respectively. The κ factors are given by

κV = sβ−α, κτ = sβ−α + ζecβ−α, (19)

∗There have also been discussions of the MS scheme for the determination of the mixing counterterms [21–24].
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Figure 1. Deviations in the decay rates ∆R as a function of δ(≡ 1−sin(β−α)) in the Type-I 2HDM with
mH± = mH = mA = 300 GeV, tan β = 2, cos(β−α) > 0 and M2 being scanned under the constraints from
perturbative unitarity and vacuum stability. The black and red shaded regions represent the predictions
by using the KOSY scheme [18] and the new scheme [8], respectively. The blue dashed curve show the
LO result.

where ζe is given in Table 1. Writing these NLO decay rates as

Γ(h→ Zℓℓ̄)NLO = Γ(h→ Zℓℓ̄)LO(1 + ∆Zℓℓ
EW), (20)

Γ(h→ ττ̄)NLO = Γ(h→ ττ̄)LO(1 + ∆τEW), (21)

the conditions (17) and (18) are expressed as

∆Zℓℓ
EW = ∆

Zℓℓ
EW

∣∣∣∣
SM
, ∆τEW = ∆

τ
EW

∣∣∣∣
SM
, (22)

where ∆Zℓℓ
EW and ∆τEW are the electroweak corrections to the decay rates of h→ ZZ∗ → Zℓ+ℓ−

and h→ τ+τ−, respectively, and the former (latter) includes the counterterm δ(β− α) (δβ and
δ(β − α)) with δ(β − α) ≡ δβ − δα. See [8] for the detailed expressions for δ(β − α) and δβ.

Now, let us show numerical results for the decay rates at NLO by using the new scheme
discussed above. We here employ the H-COUP package [25–27] for the numerical evaluation
of the decay rates at NLO by implementing the new renormalization scheme into the latest
version (Ver. 3).

In Fig. 1, we show the deviation in the decay rates ∆R as a function of δ(≡ 1 − sβ−α) in
the Type-I 2HDM, where ∆R is defined as

∆R(h→ XY) ≡
Γ(h→ XY)NLO

Γ(h→ XY)SM
NLO

− 1. (23)
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Figure 2. Same as in Fig. 1, but for ∆R(h→ τ+τ−) and ∆R(h→ bb̄) in the Type-X 2HDM.

We compare the results given in the KOSY scheme [18], the new scheme and the corre-
sponding LO one. We here scan the value of M2 under the constraints from the perturbative
unitarity bound [28–31] and the vacuum stability bound [32–34]. It is seen that the results for
∆R(h → ZZ∗) and ∆R(h → τ+τ−) given in the new scheme and in the LO show quite good
agreement with each other as these are taken as the inputs in the renormalization conditions.
The results for ∆R(h→ WW∗) and ∆R(h→ bb̄) can be regarded as the prediction in the new
scheme, and they also show good agreement with the corresponding LO results.

In Fig. 2, we show ∆R(h → τ+τ−) and ∆R(h → bb̄) in the Type-X 2HDM. As in the
Type-I 2HDM, ∆R(h → τ+τ−) given in the new scheme shows quite good agreement with
that given at LO. On the other hand, we see the large difference between ∆R(h→ bb̄) given in
the new scheme and the LO result, especially in the case with smaller δ. This can be explained
by the contribution from the δZh (wavefunction renormalization for h) term in ∆τEW which is
proportional to tan(β − α) after substituting the expressions of δβ and δ(β − α) determined
by the renormalization conditions (17) and (18). The counterterm δZh typically gives O(1)%
corrections to the couplings of h at one-loop level for M2/v2 ≪ 1, and now its correction is
enhanced by the factor of tan(β−α) in the nearly alignment case, i.e., cβ−α ≪ 1. Such a large
correction appears when ζτ , ζ f ( f , τ), e.g., ζτ = − tan β and ζb = cot β as in the Type-X
2HDM, while the δZh dependence disappears in ∆ f

EW for ζτ = ζ f as in the Type-I case.

4 Conclusions

We have discussed the new renormlization scheme for the mixing counterterms δα and δβ in
the 2HDMs with a softly-broken Z2 symmetry, in which these counterterms are determined
by demanding that the NLO decay rates of h → Zℓ+ℓ− and h → τ+τ− are determined by
the corresponding NLO prediction in the SM multiplied by the squared scaling factor at tree
level. We have shown that the deviations in the decay rates of h → ZZ∗ and h → WW∗

from the SM predictions at NLO are well described by sβ−α, while those of the decay rates
of h→ f f̄ strongly depends on the type of the Yukawa interactions and the type of fermions.
For instance, in the Type-I 2HDM, the deviations in the decay rate of h → f f̄ are well
described by the tree level scaling factor κ f , but those of h → bb̄ in the Type-X 2HDM can
be quite large depending on values of M2 and cβ−α. Using our new scheme, we can input
the devations in the decay rates of h → ZZ∗ and h → ττ from the SM value, which will



be measured in future Higgs factories, and then we can compare the predictions of the other
decay modes and the corresponding measured values.
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