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Abstract. High density electromagnetic sandwich calorimeters with high read-
out granularity are considered for many future colliders and fix-target exper-
iments. Optimization of the calorimeter structure from the point of view of
the electromagnetic shower energy, position and direction measurement is one
of the key aspects of the design. However, mostly uniform sampling struc-
tures were considered so far. We developed a semi-analytical approach to study
calorimeter performance based on the detailed Geant 4 simulation, which also
allows comparing the expected performance for different non-uniform longitu-
dinal readout structures. For multi-objective optimization, a procedure based on
the genetic algorithm is complemented with non dominated sorting algorithm.
This methodology opens new prospects for a calorimeter design optimization,
directly addressing specific measurement scenarios or optimization goals.

1 Introduction

The LUXE experiment [1–3] proposed at DESY will make use of the 16.5 GeV electron beam
of the European Free Electron Laser (Eu.XFEL) colliding with an intense optical laser beam
for research in the field of the Strong Field Quantum Electrodynamics (SFQED). The scien-
tific goal of the LUXE experiment is to measure the rate and spectra of e+e− pairs produced in
e-laser and γ-laser modes, as well as spectra of Compton electrons and photons in the e-laser
configuration. LUXE will operate in a two-arms planar spectrometer configuration equipped
with calorimeters and trackers to measure the energy and position of electrons and positrons,
see figure 1 (left). In addition, downstream from the interaction point, dedicated detectors
will be installed to measure the energy and flux of Compton photons. Additional components
allowing for exotic particle searches are also considered.

Precise measurements of the rates and energy spectra of positrons produced in the non-
linear processes, for different laser intensities and interaction modes, is a key to exploring
SFQED domain. Examples of positron energy spectra for the e-laser configuration in the ini-
tial LUXE phase are shown in figure 1 (right). This is however a very challenging measure-
ment for the detector design, as the number of positrons produced per beam crossing will vary
by many orders of magnitude, depending on the interaction mode in the experiment, and on
the laser power. For low and moderate multiplicities, one can resolve individual showers and
measure their energy and positions/angles. However, for high multiplicities with overlapping
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Figure 1. Left: schematic layouts for the e-laser LUXE setup; shown are the magnets, detectors, main
shielding and beam dump absorbers [3]. Right: positron energy spectrum for the e-laser configuration
for the initial LUXE phase, for two different values of the dimensionless laser intensity parameter ξ.

Figure 2. A sketch of the LUXE ECAL-P mechanical structure. The frame holds the tungsten absorber
plates, interspersed with sensor planes. The front-end electronics mounted on the PCBs (shown in
green) is positioned in the aluminium frames on top of ECAL-P and connected with sensor pads via
kapton PCB foils [3].

showers, only the total number of positrons and the energy spectrum can be reconstructed.
To meet these requirements, a high density sampling calorimeter made of tungsten plates and
thin silicon sensors was selected for the LUXE positron calorimeter (ECAL-P).

2 LUXE ECAL-P design

The LUXE ECAL-P will consist of 21 tungsten plates of 1 X0 thickness (3.5 mm) interspersed
with 20 instrumented silicon sensor planes, placed in a 1 mm gap between absorber plates [3].
The whole structure will be held by an aluminium frame, with slots on top to position the
front-end boards (FEB). A sketch is shown in figure 2. In the current design, ECAL-P sensors
are made of silicon wafers of 320 µm thickness. Each sensor has a surface of 9 × 9 cm2

split into 256 pads of 5.5 × 5.5 mm2 size (p on n-bulk type). Each complete detector plane
will consist of six adjacent sensors. The fiducial volume of the calorimeter will then be
54 × 9 × 9 cm3.



The ECAL-P will be installed 4.3 m from the interaction point (IP) on a special optical
table, about 10 cm behind the silicon tracker. From simulations and tests of the LumiCal
prototype [4] on which the ECAL-P design is based, the expected energy resolution is σ/E =
20%/

√
E/GeV and the position resolution is about 750 µm for electrons of 5 GeV. From the

deflection in the dipole magnet field, the position resolution translates into energy resolution
ofσ/E = 0.5% to be compared toσ/E = 9% from calorimetry measurement alone. However,
for the positron flux and energy spectra reconstruction in the high multiplicity environment,
position and energy measurements from the ECAL-P need to be combined. That is why the
ECAL-P design has to be optimized for both position and energy reconstruction precision.

3 ECAL-P configuration scan

The idea of design optimization emerged when studying the expected ECAL-P performance
in simulations. The question was raised on the possible impact of the reduced number of
active sensor planes. The number of readout planes could be reduced because of the sensor
damage or readout problems (after sensors and readout electronics are assembled and in-
stalled), or just because of budget constraints. This problem could be easily addressed based
on the existing Monte Carlo event samples from Geant4 simulation of the LUXE experiment.
We focused on the intrinsic energy and position resolution resulting from the fluctuations in
the electromagnetic cascade, while modelling of the silicon sensor structure and effects of the
readout electronics were not considered. Sensor segmentation, signal sampling and ampli-
tude deconvolution in the readout electronics, threshold and smearing effects should clearly
be taken into account for the final optimization and performance studies but are not expected
to change the general conclusions.

It was almost immediately realized that for the non-uniform calorimeter structure (which
is the case when some sensor layers are not instrumented or the sensors are broken) recal-
ibration of the remaining layers is a must. When the longitudinal shower leakages can be
neglected, the distribution of the calorimeter response for a given positron energy can be very
well described by the Gamma distribution, which has two free parameters. A convenient
choice is to use the average calorimeter response and the RMS of the distribution. Calibra-
tion factors for the subsequent calorimeter sensor layers can be then found by solving the
minimization problem: looking for the minimum of RMS with a fixed value of the aver-
age calorimeter response (equal to the initial positron energy). An analytical solution to this
problem was found, resulting in a very fast and efficient calibration procedure, which can
be applied to many calorimeter instrumentation scenarios. Example results of the proposed
calibration procedure are shown in Fig. 3. Calibration factors obtained from the calibration
procedure performed in the 2.5 – 15 GeV positron energy range are shown for two scenarios.
When all calorimeter layers are instrumented (left plot), a uniform calibration is obtained for
most of the calorimeter layers (up to layer 15, corresponding to the calorimeter depth of 15
X0). The increase in the calibration factors for the last layers can be understood as an effec-
tive way to correct for the longitudinal leakages for late showers. If one of the calorimeter
layers is removed from the readout (right plot), the optimisation procedure results in signif-
icant increase in the calibration factors for the neighbouring layers, in an attempt to correct
(on average) for the signal losses in the nonactive layer.

With the very fast calibration procedure described above, comparison of the expected
performance for many calorimeter instrumentation schemes became possible. In fact, for
the assumed LUXE ECAL-P structure with 20 sensor gaps, all possible instrumentation sce-
narios could be tested, all 220 − 1 = 1′048′575 possible choices of 1 to 20 sensor gaps to
be instrumented with silicon sensors. This is illustrated in Fig. 4 (left), where the energy
resolution figure-of-merit (FoM) is shown for all scenarios as a function of the number of



Figure 3. Calibration results for the LUXE positron calorimeter, as obtained with Geant4 simula-
tion, for energy resolution optimization in the 2.5 – 15 GeV range. Calibration factors of subsequent
calorimeter layers are shown for a calorimeter with all sensor layers (left) and for the test scenario with
the eighth sensor layer missing (right). The horizontal dashed line indicates the calibration factor value
for the uniform calibration of the fully instrumented calorimeter.

Figure 4. Results of the longitudinal readout structure optimization of the LUXE positron calorimeter.
Figure-of-merit (FoM) for the energy resolution (left) and FoM for the position reconstruction (right)
are shown as a function of the number of instrumented sensor layers, relative to the optimal 20 layer
configuration result. Shown as the green band are FoM values which can be obtained for different
instrumentation scenarios (all possible configurations of layers selected for instrumentation), from the
optimal (lower boundary) to the worst one (upper boundary).

instrumented layers. The optimization was carried out for positrons perpendicular to the face
of the calorimeter. It is clear that the reduction in the number of sensor layers results in worse
energy resolution, but the effect of going from 20 to 18 layers is marginal, if the removed
layers are properly chosen (lower boundary of the result band), increasing fast only below 15
instrumented layers.

Optimal calibration of the calorimeter is the one resulting in the best energy resolution and
best linearity of the response (these are two different optimization goals, but they are com-
bined in the developed procedure). However, a similar optimization procedure can be applied
to the problem of positron position measurement, when we look for the optimal weighting
factors to calculate the shower position from average positions in subsequent layers. Again,
we can then check how removing some sensor layers affects the positron position recon-
struction. This is shown in Fig. 4 (right), where the position resolution FoM, defined as the



Figure 5. Results of the longitudinal readout structure optimization of the LUXE positron calorime-
ter. The FoM for the position resolution, (FoM)P, as a function of the FoM for the energy resolution,
(FoM)E, for all possible configurations with 15 instrumented layers, relative to the 20 layer configura-
tion result.

expected resolution of the weighted position average, is shown as a function of the number of
active readout layers. It is clear that the dependence is very different from the one observed
for the energy resolution (left plot). As the width of the developing electromagnetic shower
increases with calorimeter depth, the best position reconstruction is obtained from the first
few layers. Position reconstruction in the last layers of the calorimeter have hardly any effect
on the reconstructed initial positron position. Even with only 10 active layers, we can find
a configuration resulting in position reconstruction precision only 5% worse than with 20
layers.

When looking for the optimal detector design, all relevant aspects of its performance
(like response linearity, energy resolution, shower position and angle measurement preci-
sions) should be considered. In most cases, different optimization goals will result in differ-
ent design options being selected. This is illustrated in Fig. 5, showing the distribution of
the position resolution and energy resolution FoM for all 15’504 calorimeter configurations
involving 15 active layers. Although there is some correlation between the two parameters,
the best energy resolution and the best position resolution cannot be achieved at the same
time; they correspond to different instrumentation schemes. However, the scenario resulting
in almost optimal energy resolution and almost optimal position resolution at the same time,
can be easily selected in the presented case. This scenario, with calorimeter gaps 2 to 14, 16
and 17 instrumented with silicon sensors, is indicated with a black star in Fig. 5.

4 Monte Carlo optimization

Optimization of the ECAL-P prototype sensitive layer layout described above was a relatively
simple task. With 20 slots between tungsten layers, the number of geometry configurations
to consider is relatively small (∼ 106). With a fast analytical calibration procedure (few µs
per configuration) the problem can be solved directly by checking all of these configurations.
However, this approach is not possible when we want to consider a more general optimization
problem.

For obtaining optimal energy or position resolution, one should allow for non-uniform
longitudinal structure of the calorimeter, with varying distances between subsequent sensor
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Figure 6. Results of the Monte Carlo optimization of the calorimeter configuration, for 15 active layers,
based on one million random layer configurations generated for each energy. Left: best layer configu-
ration as a function of energy. Right: energy resolution FoM for the best 1000 layer configurations at
different energies. Configurations are ordered by increasing energy resolution FoM.

layers. However, the most general approach, allowing for absorber layers of arbitrary thick-
ness is difficult to implement as the new GEANT4 simulation (very time-consuming for large
event samples) needs to be run for each considered configuration. As a compromise, we cre-
ated a dedicated ECAL-P model with 75 tungsten plates of 1

3 X0 each and 75 active layers
with 320 µm silicon sensors in 1

3 mm gaps between them. With this structure, we obtain al-
most the same average density of the calorimeter as for the baseline LUXE ECAL-P design,
but the calorimeter is extended to 25 X0 and the position of sensor layers can be selected with
the 1

3 X0 precision.

With the assumed detector model there are about 2 · 1015 configurations possible for a
calorimeter with 15 active sensor layers. While scanning over all configurations is clearly
not possible, we tried to use a Monte Carlo method, selecting configurations at random, to
look for optimal layer configuration. Example results of such a procedure are shown in fig-
ure 6 (left), where positions of the sensor layers, optimal from the perspective of the energy
resolution, are shown as a function of the positron energy for a calorimeter with 15 sensor
layers Positions shown are calculated as average layer positions from the 100 configurations
with the best energy resolution out of the million of random configurations generated for a
given energy. Two effects can be observed. Optimal calorimeter structure depends on the
initial energy: layer depths increase with energy as expected, reflecting lengthening of the
longitudinal profile of the electromagnetic cascade. But also, in the general approach used,
optimal energy resolution is obtained for a non-uniform longitudinal structure, with differ-
ent thicknesses of the subsequent absorber layers. On the other hand, although 106 random
configurations were generated per energy point, significant fluctuations are still visible in the
results, for the last sensor layers in particular. This is also illustrated in figure 6 (right) where
the energy resolution FoM, defined as the ratio of the expected energy resolution to the refer-
ence resolution of 20%/

√
E, averaged over the considered positron energy range from 2.5 to

20 GeV, is shown for the best 1000 Monte Carlo configurations (ordered in energy resolution
FoM) at each energy. There are significant differences between the subsequent configura-
tions selected, showing that the Monte Carlo procedure is far from converging to the optimal
choice. This shows that the Monte Carlo approach itself is not efficient enough to find opti-
mal solutions, and it has to be complemented by a second stage, where modifications of the
initially selected configurations should be considered.



Figure 7. Schematic presentation of the genetic algorithm concept. Left: two parents are randomly
selected from the collection of best configurations, and a random cut in the layer sequence is used to
combine the first part of the first parent with the second part of the second one. Right: random mutations
are added to the combined layer sequence.

5 Genetic algorithm

The Monte Carlo approach is a convenient way to select the initial sample of configurations
with a reasonable calorimeter performance. A Genetic algorithm [5] can be then explored to
evolve this sample towards optimal configurations. The Genetic algorithms are inspired by
biological evolution processes, such as reproduction, mutation, recombination, and selection.
Implementation of this algorithm to the calorimeter configuration evolution is illustrated in
figure 7. At each step of the algorithm, we select the 1000 best candidates from the currently
considered configuration-set as potential “parents” for the next generation. We then generate
10 000 “children” by randomly selecting two parents and merge their layer positions based
on a random cut in the layer sequence (see left plot in figure 7). At the last step, random
mutations are added to the combined layer sequence. Mutation size (change of layer gap
index) are generated from a Poisson distribution (and including random sign) with initial
average mutation size of 1, decreasing with each step of the algorithm. If the sequence
of layer indexes is “broken” at any step of the algorithm (not in strictly increasing order),
generation of a given child is repeated starting from the very beginning (parent selection).

Performance of the genetic algorithm for the energy resolution optimisation problem is
presented in figure 8. Presented are layer positions for 100 configurations with the best energy
resolution in each shown generation. Starting from the random selection of configurations
(Monte Carlo optimization), large differences are observed between the best configurations
generated with genetic algorithm even after 10 steps. This is also due to sizable mutations
introduced in the algorithm which smear the initial configurations. Still, after 20 steps of
the algorithm, when the mutation level is already negligible, we end up with a uniform set of
configurations (all best configurations are the same). This is also shown in figure 9, where the
energy resolution FoM for 10 GeV incident positron energy is shown for the best 1000 config-
urations (ordered in resolution) from each generation. While there are significant differences
between the best solutions in the first few generations, the generation becomes almost uni-
form after 20 generations and no further improvement is possible (the algorithm was stopped
after 30 generations).

Two effects which were mentioned in section 4 when discussing results shown in fig-
ure 6 (left) are much better visible in the last plot in figure 8 (configurations after 20 genetic
algorithm steps) as the fluctuations are largely suppressed. Optimal calorimeter layer depths
increase with energy, reflecting lengthening of the longitudinal profile of the electromagnetic
cascade and the optimal energy resolution is obtained for a non-uniform longitudinal struc-
ture, with the largest density of readout layers in the region of the cascade maximum.
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Figure 8. Positions of the calorimeter layers as a function of energy for 100 configurations with the best
energy resolution, resulting from the genetic algorithm application with 5, 10, 15 and 20 generations.
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Figure 9. Energy resolution FoM for the best 1000 layer configurations at 10 GeV energy and different
generations of the calorimeter configurations. The first generation of parents is selected from a random
set of layer configurations.

6 Multi-objective optimization

Procedures described in sections 4 and 5 focused on energy resolution optimization only.
However, as already discussed in sections 2 and 3, the ECAL-P design has to be optimized for
both position and energy reconstruction precision. If the optimization goal can be uniquely
defined in terms of the measurable performance parameters, the optimization procedure can
be adjusted accordingly, based on a new figure of merit. Example of the genetic algorithm
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Figure 10. Example of the genetic algorithm application to the multi-objective problem. The Energy
FoM as a function of the position FoM for the best 1000 layer configurations from subsequent configu-
ration generations. Optimized is the combined FoM, defined as a sum of the energy and position FoMs.

application to the multi-objective problem is presented in figure 10. FoM for the calorimeter
structure optimization is defined as the sum of the energy resolution and position resolution
FoMs. As was the case previously, optimization based on the genetic algorithm converges
fast to a single solution.

Unfortunately, a universal FoM can not be defined in most cases. For the LUXE ECAL-
P, relative importance of position and energy resolution in the data analysis will depend on
the experimental conditions (types of collisions, electron beam quality, laser beam intensity
etc.) and the measurement goal. Also, the performance of the silicon tracker, placed in
front of the calorimeter, can have significant impact on the analysis. In the most general
approach, when optimizing the longitudinal structure of the calorimeter, we should try to
look for the procedure allowing for both energy and position measurement optimization, but
without specifying a particular optimization goal.

We decided to solve this problem with a non dominated sorting procedure. This idea
was previously successfully used in the top-quark threshold scan optimization at CLIC [6].
It is based on the observation that, even when we look at two different objectives, partial
sorting of different configurations should still be possible. When configuration A gives better
energy resolution and better position resolution than configuration B, we can clearly state
that A is better (more optimal) than B. However, if only one resolution is better and the other
one is worse, we can not decide which configuration is better (without considering particular
measurement goals). They have to be considered as equivalent. By grouping configurations
in equivalent sets, we form the so-called Pareto fronts, and we can (at least partially) sort all
considered configurations and select the best performing ones (by selecting best performing
fronts) without any additional assumptions! This sorting procedure can be used together with
a genetic algorithm to find the best performing calorimeter configurations.

Results of the genetic algorithm optimization of the longitudinal calorimeter structure
with non dominated sorting are presented in figure 11. Presented are the best 1000 layer
configurations from subsequent generations, grouped in Pareto fronts (indicated by colour).
In the initial steps, about 20 Pareto fronts contribute to the best 1000 configurations (used as
parents for the next generation), but the front multiplicity is increasing fast. After 18 gen-
erations 97% of the best configurations belong to the first front and no further improvement
is obtained. It is important to notice that the final selection of configurations forms a curve
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Figure 11. Energy and position FoMs for the best 1000 layer configurations from subsequent configu-
ration generations. For each generation, configurations are selected based on Pareto fronts, as indicated
in the plot.

in the FoM plane tangential to the envelope of the targeted optimization results presented in
figure 10.

The procedure presented here does not allow for the final selection of the best calorimeter
configuration. However, a collection of quasi-optimal configuration options can be selected
with the proposed procedure, which can be further studied in more details. The selected
set of configurations will include very different configuration options, but when a particular
optimization goal is considered, an optimal configuration should be found within this set.
This diversity is also illustrated in figure 12, where positions of the calorimeter layers for the
best configurations are plotted as a function of the position to energy resolution FoMs. One
can clearly see that configurations with most of the instrumented layers in the first 7 X0 of
the calorimeter are preferred for measurements dominated by position resolution, while more
uniform instrumentation is required when energy resolution is more important.

7 Conclusions

Calorimeters are central components for most modern particle physics experiments used pri-
marily for the detection of charged and neutral particles, as well as for reconstruction of
their energy, position, direction and (partial) identification. Substantial progress in the devel-
opment of new sensor technologies opened new avenues for compact sampling calorimeter
design. This also opens a new field for the optimization of the calorimeter segmentation and
readout structure for the best performance of the device.

Presented in this contribution are optimization studies which were performed in the
framework of the LUXE ECAL-P group. A general, semi-analytical framework for calorime-
ter response calibration and optimization, including response linearity, energy resolution and
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Figure 12. Optimal positions of the calorimeter layers as a function of the position to energy FoM ratio
defined as the optimization goal. Presented are the best 1000 configurations from the multi-objective
optimization based on the Pareto fronts.

position resolution goals, has been developed allowing for very efficient comparison of dif-
ferent calorimeter configurations. When extended to the more general case of a high density
electromagnetic calorimeter, the genetic algorithm looks like an efficient tool for finding the
optimal calorimeter configuration. While optimization results strongly depend on the opti-
mization goal selected, non dominated sorting based on Pareto frontiers can be used to find
a larger set of optimal configuration, which can then be considered in more details, for a
particular measurement. The approach presented is very general, and it can be used also for
other experiments and calorimeter concepts.

This study was performed in the framework of the ECAL group of the LUXE collaboration. We
wish to thank all group members who contributed to the discussions of the results and the manuscript.
We would also like to acknowledge support and hospitality of WIS, Rehovot and IFIC, Valencia during
our visits.
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