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Abstract. We have developed an energy calibration method using machine
learning for the ILC electromagnetic (EM) calorimeter (ECAL), a sampling
calorimeter consisting of Silicon-Tungsten layers. In this method, we use a
deep neural network (DNN) for a regression to determine the energy of inci-
dent EM particles, improving the energy calibration resolution of the ECAL.
The DNN architecture takes cluster hit data as low-level features of the cluster.
In this paper, we report the status of our R&D and present results on energy
calibration accuracy.

1 Introduction

In the high energy colliding experiments, the precise energy measurement of the particle
clusters detected with the electromagnetic (EM) and hadron calorimeters are crucial for the
physics analyses. We have developed an energy calibration method using machine learning
for the ILC EM calorimeter (ECAL), which is a sampling calorimeter that measures the en-
ergy of the particle cluster produced by the incident EM particle (electron or photon), for the
precise energy determination. In our energy calibration method, we treat the energy calibra-
tion as a regression problem and use a deep neural network (DNN) architecture. Cluster hit
data are used as low-level features in the DNN model. This paper reports the current status
of the research and development (R&D) efforts.

Both ILD and SiD detector designs employ the sampling type calorimeter for ECAL to
measure the energies of incident electrons and photons for ILC experiments. In this study
we use the ECAL detector simulation data for SiD. The SiD ECAL is the Silicon-Tungsten
sampling type calorimeter, where absorbing Tungsten layers alternate with sensitive Silicon
layers with 20 thin (2.5mm) Tungsten layers followed by 10 thick (5.0mm) layers for a total
of 26X0. The design value of the energy resolution is ∆E/E = 0.17/

√
E ⊕ 0.01. The SiD

ECAL design is described in the ILC Technical Design Report (TDR)[1].
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In this study, we use the MC data for SiD ECAL, here single EM particle is injected to the
detector, and ECAL hits originating from the same incident particle are gathered as a cluster.
Figure 1 shows the diagram of the ECAL which consists of twelve trapezoidal modules,
with coordinate (left) and the schematic drawing of the hit production from an incident EM
particle(right).

Figure 1. Diagram of the ECAL with coordinate (left) and the schematic drawing of the hit production
from an incident EM particle(right), used in the study.

In the conventional energy calibration, the energy of a cluster, which is regarded as an
incident particle energy, is obtained by summing all hits in a cluster, and multiply by a single
coefficient. We call the method the simple reconstruction. In the simple reconstruction, there
exist several problems of :

1. Non-linearity between the true incident energy and the determined cluster energy due
to the shower energy leakage in the high energy region;

2. Particle-species dependence, due to the different shower development between elec-
trons and photons; and

3. Angular dependence due to the detector geometry.

The third problem is from the ECAL detector design, where twelve trapezoidal modules are
designed to overlap[1] in order to provide mechanical stability and cover projective gaps, as
shown in the Figure 2.

Figure 2. Technical drawing of the SiD ECAL, where trapezoidal modules are designed to overlap.

To improve the energy calibration performance, we have developed an energy calibration
method using regression neural networks (NN) and evaluate the energy calibration perfor-
mance.



2 Energy Calibration Using Machine Learning

In the regression NN based energy calibration, we input cluster data to NN and obtain the
cluster energy as an output, as shown in Figure 3.

Figure 3. Energy calibration using a regression NN. we input cluster data to NN and obtain the cluster
energy as an output.

For the cluster data, in our previous study, we firstly try the cluster data (based on the
cluster CM position, sum of the hit energy, and kinematical variables for the cluster) as high-
level feature data[2]. In that study, we get the better energy calibration performance than the
simple reconstruction, but there remain the ϕ-dependence. To obtain the better performance,
we directly input the all hit data in a cluster, as the low-level feature data input to NN.

2.1 Architecture of the Neural Network

We construct the regression NN for low-level feature data input based on the 4-layer multi-
layer perceptron neural network (MLP), as shown in Figure 4 left. Each hit has 5 parameters:
hit energy, hit position (x, y, z), and the layer number of the hit, and all hits in a cluster are
combined into one input vector. The size of the input data is fixed to be 5 × 1900, and we
apply 0-padding for the input without hit information. The number of nodes in one hidden
layer is fixed to 100. The hyper parameters for the architecture is summarized in Figure 4
right. A PyTorch[3] framework is used to implement the NN design.

Figure 4. Schematic design of the regression NN model (left) and its hyperparameters (right).

3 Results

We apply the regression NN with low-level feature data (hit data), and evaluate the energy
calibration performance. Here we evaluate 1. NN training is performed for photon or elec-
trons separately, and 2. NN training is performed with a data including both photon and
electrons (electron and photon mixed data).



3.1 Energy Resolution for Photons or Electrons

We show the energy resolution results using hit data 1) for incident electrons (Figure 5) and,
2) for incident photons (Figure 7), in the energy range of 2-40 GeV. The figures (a) to (d)
in Figures 5 and 7 show the learning curve, the 2-D graph for the true energy and predicted
energy (by NN regression) , the energy resolution with respect to the incident energy, and the
energy resolution with respect to phi, respectively.

Figure 5. Results for electrons: (a) learning curve, (b) the 2-D graph for the true energy and predicted
energy (by NN regression), and (c) the energy resolution with respect to the incident energy.

Figure 6. Results for photons: (a) learning curve, (b) the 2-D graph for the true energy and predicted
energy (by NN regression), (c) the energy resolution with respect to the incident energy, and (d) energy
Resolution with respect to phi.

Looking at the learning curve of the neural network (NN), the loss value is around 0.7-0.8,
indicating successful training (a). As a result, a linear relationship between the true energy
(horizontal axis) and the calibrated energy (vertical axis) is obtained (b), leading to the energy
calibration accuracy shown in Figures (c) and (d). The energy resolution achieved is 16-18%
for electrons and 16-22% for photons, which is close to the design value across all energy
ranges. Furthermore, the phi distribution shows no angular dependence. Therefore, better
results are obtained compared to the values (22-25%) from previous studies using high-level
feature data.

3.2 Energy Resolution Based on the NN Trained with Electron-Photon Mixed Data

In the previous section3.1, the regression NN is trained only based on the electrons or pho-
tons. In this section, we show the energy resolution results with a NN which is training with
a data including both photon and electrons (electron and photon mixed data).

The results of (a) learning curve, (b) the 2-D graph for the true energy and predicted
energy (by NN regression) , (c) the energy resolution with respect to the incident energy,
and (d) the energy resolution with respect to phi are shown in Figure7. The results of train-
ing with mixed data show a deterioration compared to the results of training with separate



electron/photon samples, but an energy calibration accuracy of approximately 18-21% is
achieved.

Figure 7. Results for electron and photon mixed training data: (a) learning curve, (b) the 2-D graph for
the true energy and predicted energy (by NN regression), (c) the energy resolution with respect to the
incident energy, and (d) energy Resolution with respect to phi.

As results shown in the sections 3.1 and 3.2, the energy resolution improves across all
energy ranges (2-40 GeV) by directly input the low-level feature (hit data) to the NN :

• Achieved to an ideal energy resolution of 17(+1)% across the entire energy range;

• Disappeared the angle ϕ dependence; and

• Good energy accuracy even for the NN, which is trained with electron and photon mixed
data.

4 Conclusion

We have developed an energy calibration method using a regression neural network with low-
level hit data for the EM calorimeter in the ILC experiment. The NN-based energy calibration
method provides better performance than conventional reconstruction methods by accounting
for non-linear detector responses. The use of low-level feature enables the network to learn
spatial information from hits, leading to stable energy resolution with respect to the ϕ angle.

As future works, we will applying this method to the ILD detector design and exploring
alternative NN architectures, such as graph neural networks (GNN), to further improve energy
calibration performance.
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