

B. Foster, R. D'Arcy & C.A. Lindstrøm

Plasma Wave Acceleration

Charge density wave in a plasma

Femtosecond pulse duration

Intrinsically short due to short plasma wavelength

GV/m acceleration gradients

No surface quality limitations \rightarrow E_z in GV/m range

Hybrid Asymmetric Linear Higgs Factory (HALHF)

- The basic idea is there are enough problems with a PWFA e accelerator; e⁺ is even more difficult. Bypass this for e⁺e⁻ collider by using conventional linac for e⁺.
- For this to be attractive financially, conventional linac must be low energy => asymmetric energy machine.
- This requirement led to (at least for us) unexpected directions – the more asymmetric the machine became, the better!

Relativistic Refresher

$$
E_e E_p = s/4 \tag{1}
$$

and

$$
E_e + E_p = \gamma \sqrt{s},\tag{2}
$$

where E_e and E_p are the electron and positron energies, respectively, govern the kinematics. These two equations link three variables; fixing one therefore determines the other two. For a given choice of positron and centre-ofmass energy, the boost becomes

$$
\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right). \tag{3}
$$

• It turns out that the (an) optimum (see below) for $E_{cm} = 250$ GeV is to pick E_e = 500 GeV, E_p = 31 GeV, which gives a boost in the electron direction of $\gamma \sim 2.13$.

HALHF Layout

• Overall facility length \sim 3.3 km – which will fit on \sim any of the major (or even ex-major) pp labs. (NB. A service tunnel a la ILC is costed but not shown)

Energy Efficiency

- Asymmetric machines less energy efficient than symmetric energy lost "in accelerating the C.o.M." For equal bunch charges => 2.5 times more energy required for same C.o.M. energy.
- Can be reduced by introducing asymmetry into beam charges increase charge of low-energy beam and decrease high-energy s.t. $N^2 = N_eN_p$ constant => L conserved.
- $P/P_0 = (N_e E_e + N_p E_p)/(N*sqrt(s))$
- Optimum is to scale e^+ charge by sqrt(s)/(2 E_p), i.e. factor \sim 4.
- Producing so many e⁺ problematic compromise by scaling by factor 2 $(2^*e^+, ½^*e^-).$
- Reduces energy increase to 1.25. Also reduces bunch charge in PWFA arm.

Emittance reduction

- Geometric emittance of bunch scales with 1/E .
- Lower-energy e^+ beam must have smaller β function at I.P. use $\beta_x/\beta_y = 3.3/0.1$ mm c.f. CLIC 8.0/0.1 mm.
- In contrast, high-energy e^- beam β function can be increased, which could reduce complexity of BDS.
- More interesting is to increase the e-emittance AND reduce the β function => normalized emittance can be 16 times higher for the same L => increased tolerances in PWFA arm.
- Beam-beam focusing effect on L must be simulated with Guinea Pig.

Beam-beam Effects

•Guinea-Pig results:

• ILC

- HALHF
- HALHF with reduced emittance for PWFA

Electron

source

 $(5 GeV e⁻)$

lasma-accelerator linac

(16 stages, ~32 GeV per stage

(250 GeV c.o.m.

(5-31 GeV e+/drivers)

Beam-delivery systei

(500 GeV e⁻)

- $(31 \text{ GeV} \text{e}^+)$ Scale: 500 m • "Conventional" e⁺ sources are not trivial – that for ILC, which has relaxed requirements wrt HAHLF, still under development.
- e accelerated to 5 GeV and then collide with target to produce e+ which are accumulated, bunched and accelerated to 3 GeV and then damped in 2 rings (γ identical to CLIC but bigger e^+ bunch charge $(4*10^{10}e^{+})$.
- May be possible to use spent e⁺ bunch after collision rather than dedicated e bunch, with cost savings.

- Assume gradient of 25 MV => 1.25 km long.
- Delivers total average power of 21.4 MW => including e⁺ power and $\varepsilon \sim 50\%$, wall-plug 47 MW.
- Assume warm L-band linac CW SRF could be used but would change bunch pattern.
- Before drivers, e⁺ bunch accelerated with 180^o phase offset.

B. Foster, CEPC Workshop, 10/23 11

PWFA Linac

- Drivers go through turn-around and then distributed to plasma cells via undulating delay chicane.
- Assuming TR \sim 1, e- bunch accelerated by 31 GeV/5m stage \Rightarrow 16 stages with ρ \sim 7*10¹⁵ => 6.4 GV/m.
- Interstage optics needs ~ <26.5m> but scales with sqrt(E).
- Total length of PWFA linac = 410m. B. Foster, CEPC Workshop, 10/23 ¹²

Bunch-train pattern.

• Assuming L-band linac:

Iohn Adams Institute for Accelerator Science

HALHF Parameter Table

B. Foster, CEPC Workshop, 10/23 ^a The first stage is half the length and has half the energy gain of the other stages (see Section V. 4).

RF linac

(5-31 GeV e+/drivers)

Beam-delivery system

Electron

source

RE linge

 $(5 GeV e⁻)$

Plasma-accelerator linac

Driver source.

RF linac (5 GeV)

^a Swiss deflator from 2018 \rightarrow 2012 is approximately 1. Conversion uses Jan 1st 2012 CHF to \$ exchange rate of 0.978.

^b Cost of PWFA linac similar to ILC standard instrumented beam lines plus short plasma cells & gas systems plus kickers/chicanes. The factor 6 is a rough estimate of extra complexity involved.

^c The positron transfer line, which is the full length of the electron BDS, dominates; this plus two turn-arounds, the electron transport to the positron source plus small additional beam lines are costed.

B. Foster, CEPC Workshop ^d The HALHF length is scaled by \sqrt{E} and the cost assumed to scale with this length.
B. Foster, CEPC Workshop e Length of excavation and beam line taken from European XFEL dump.

SOUTCE

Interaction point

(250 GeV c.o.m

 (3 GeV)

•Snowmass study ITF of various accelerator costs gives ILC Higgs Factory Total Project Cost (TPC) (= US accounting) of $$7 - 12B (2021 \text{ }S)$. Scaling this by the value estimate (~European accounting) of HALHF/ILC@Snowmass gives HAHLF TPC ~ \$2.3 – 3.9B: c.f. EIC TPC = \sim \$2.8B. Direct estimate by ITF people (Seeman/Gessner) gives \$4.46B.

Adams Institute r Accelerator Science

- •Dominated by power to produce drive beams.
- \cdot (100*16*4.3nC + 6.4nC)*100 => 47.5 MW@50% eff.
- •Damping rings: 2*10 MW.
- Cooling assume similar to CLIC => 50% of RF power (corresponds to 20 kW/m).
- For magnets and other conventional sources assume ~9 MW.
- Gives total power requirement \sim 100 MW similar to other proposa B. Foster, CEPC Workshop, 10/23 18

Experimentation at HALHF

• See Antoine's talk following.

- \bullet Energy upgrade: keep e⁺ energy same increases γ as E increases – experiments more and more difficult and running costs increase; more attractive to increase e^+ energy to keep $\gamma \sim$ constant.
- Keeping y constant by lengthening conventional linac needs $\vec{E}(\dot{e}^+)$ ~ 47.5 GeV and E(e⁻) ~ 760 GeV for E_{cm} = 380 GeV.
- Produce e⁺ polarization via ILC-like scheme ideas exist for E(e-) 500 GeV.
- Also upgrades to produce 2 IPs and $\gamma \gamma$ collider.
- If e⁺ can be accelerated, then conversion to symmetric multi-TeV collider straight-forward.

• HALHF benefits from maximal asymmetry.

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- "Conventional" design work needed: DR with high bunch charge; heavily loaded linac; BDS…

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- "Conventional" design work needed: DR with high bunch charge; heavily loaded linac; BDS…
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation $(x \sim 1000)$, beam jitter reduction $(x \sim 10-100)$.

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- "Conventional" design work needed: DR with high bunch charge; heavily loaded linac; BDS…
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).
- HALHF "kick-off" meeting held @ DESY on 23.10.23

HALHF Parameters cf ILC & CLIC

B. Foster, CEPC Workshop, 10/23 27

•Once satisfactory performance demonstrated, remaining elements can be constructed and then running at Z can be used to tune up machine and detector.

Adams Institute Accelerator Science