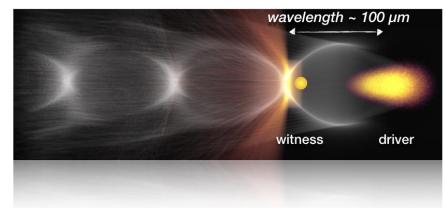


Hybrid Asymmetric Linear Higgs Factory (HALHF)

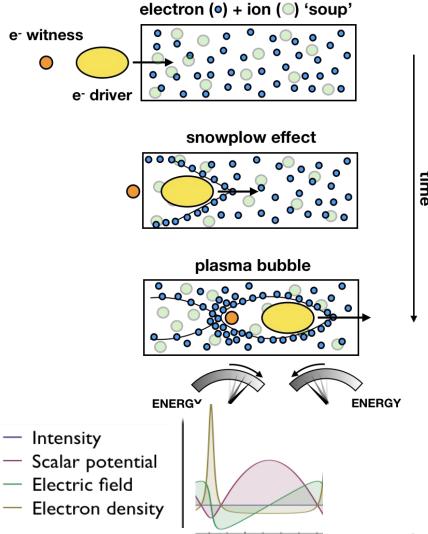
B. Foster, R. D'Arcy & C.A. Lindstrøm

Hybrid Asymmetric Linear Higgs

Factory (HALHF)


CEPC

Plasma Wave Acceleration


Charge density wave in a plasma

Femtosecond pulse duration
Intrinsically short due to short plasma wavelength

GV/m acceleration gradients

No surface quality limitations \rightarrow **E**_z in **GV/m** range

Hybrid Asymmetric Linear Higgs Factory (HALHF)

- The basic idea is there are enough problems with a PWFA e⁻ accelerator; e⁺ is even more difficult. Bypass this for e⁺e⁻ collider by using conventional linac for e⁺.
- For this to be attractive financially, conventional linac must be low energy => asymmetric energy machine.
- This requirement led to (at least for us) unexpected directions – the more asymmetric the machine became, the better!

B. Foster, CEPC Workshop, 10/23

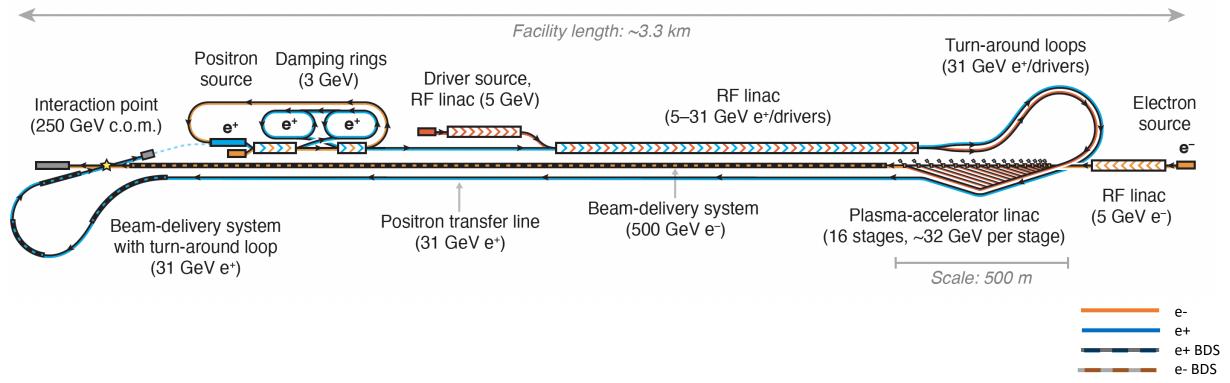
Relativistic Refresher

$$E_e E_p = s/4 \tag{1}$$

and

$$E_e + E_p = \gamma \sqrt{s},\tag{2}$$

where E_e and E_p are the electron and positron energies, respectively, govern the kinematics. These two equations link three variables; fixing one therefore determines the other two. For a given choice of positron and centre-ofmass energy, the boost becomes


$$\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right). \tag{3}$$

• It turns out that the (an) optimum (see below) for E_{cm} = 250 GeV is to pick E_e = 500 GeV, E_p = 31 GeV, which gives a boost in the electron direction of γ ~ 2.13.

HALHF Layout

• Overall facility length ~ 3.3 km — which will fit on ~ any of the major (or even ex-major) pp labs. (NB. A service tunnel a la ILC is costed but not shown)

Energy Efficiency

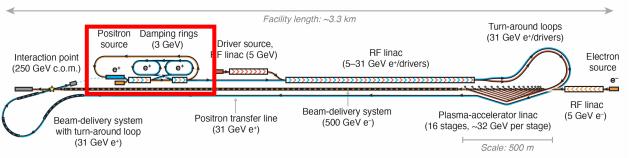
- Asymmetric machines less energy efficient than symmetric energy lost "in accelerating the C.o.M." For equal bunch charges => 2.5 times more energy required for same C.o.M. energy.
- Can be reduced by introducing asymmetry into beam charges increase charge of low-energy beam and decrease high-energy s.t. $N^2 = N_e N_p$ constant => L conserved.
- $P/P_0 = (N_e E_e + N_p E_p)/(N*sqrt(s))$
- Optimum is to scale e⁺ charge by $sqrt(s)/(2E_p)$, i.e. factor ~ 4.
- Producing so many e^+ problematic compromise by scaling by factor 2 $(2^*e^+, \frac{1}{2}^*e^-)$.
- Reduces energy increase to 1.25. Also reduces bunch charge in PWFA arm.

Emittance reduction

- Geometric emittance of bunch scales with 1/E.
- Lower-energy e⁺ beam must have smaller β function at I.P. use β_x/β_v = 3.3/0.1 mm c.f. CLIC 8.0/0.1 mm.
- In contrast, high-energy e^- beam β function can be increased, which could reduce complexity of BDS.
- More interesting is to increase the e^- emittance AND reduce the β function => normalized emittance can be 16 times higher for the same L => increased tolerances in PWFA arm.
- Beam-beam focusing effect on L must be simulated with Guinea Pig.

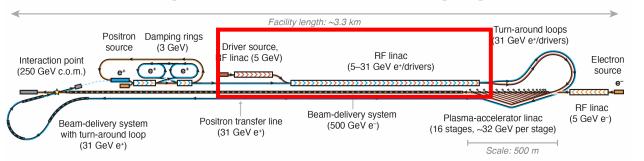
Beam-beam Effects

Guinea-Pig results:


E (GeV)	σ_z (µm)	$N (10^{10})$	$\epsilon_{nx} \; (\mu \mathrm{m})$	$\epsilon_{ny} \; (\mathrm{nm})$	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	\mathcal{L} ($\mu \mathrm{b}^{-1}$)	$\mathcal{L}_{0.01} \; (\mu \mathrm{b}^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

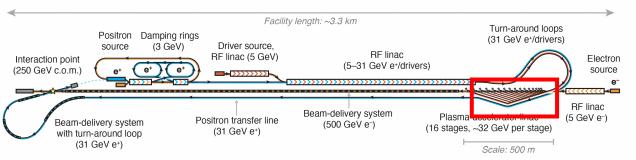
- ILC
- HALHF
- HALHF with reduced emittance for PWFA

Positron Source

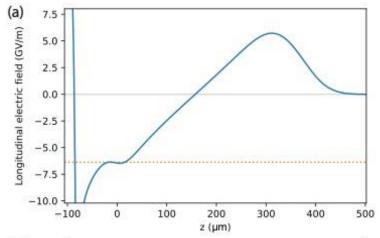


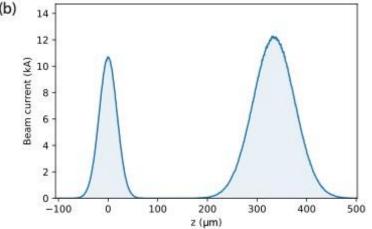
- "Conventional" e⁺ sources are not trivial that for ILC, which has relaxed requirements wrt HAHLF, still under development.
- e^- accelerated to 5 GeV and then collide with target to produce e+ which are accumulated, bunched and accelerated to 3 GeV and then damped in 2 rings (~identical to CLIC but bigger e^+ bunch charge $(4*10^{10}\,e^+)$.
- May be possible to use spent e⁺ bunch after collision rather than dedicated e⁻ bunch, with cost savings.

Main RF Linac



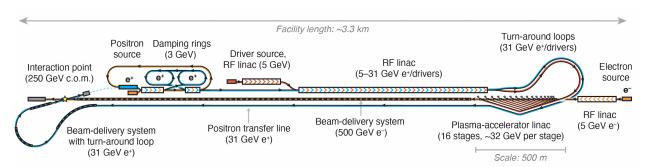
- Split in 2, to accelerate e⁻ PWFA drive beams from 1 5 GeV & then both e⁺ and e⁻ from 5 GeV to 31.3 GeV.
- Assume gradient of 25 MV => 1.25 km long.
- Delivers total average power of 21.4 MW => including e⁺ power and $\epsilon \sim 50\%$, wall-plug 47 MW.
- Assume warm L-band linac CW SRF could be used but would change bunch pattern.
- Before drivers, e⁺ bunch accelerated with 180° phase offset.

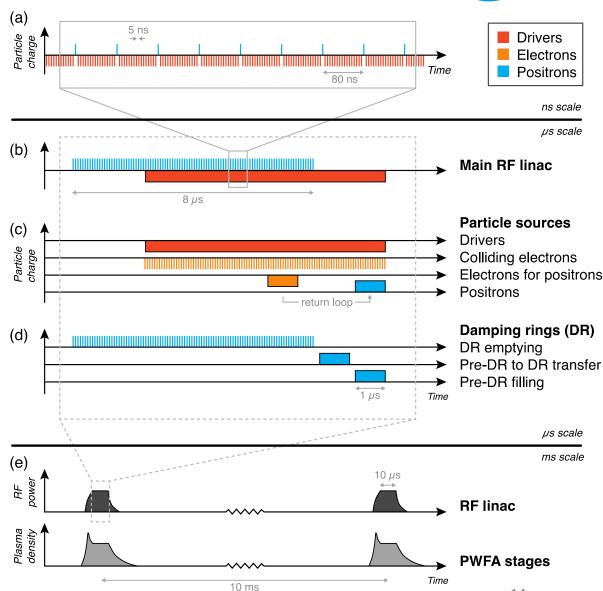

PWFA Linac



- Drivers go through turn-around and then distributed to plasma cells via undulating delay chicane.
- Assuming TR \sim 1, e- bunch accelerated by 31 GeV/5m stage => 16 stages with $\rho \sim 7*10^{15}$ => 6.4 GV/m.
- Interstage optics needs ~ <26.5m>
 but scales with sqrt(E).
- Total length of PWFA linac = 410m.

 B. Foster, CEPC Workshop, 10/23



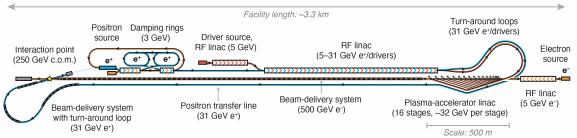


Bunch-train pattern.

Assuming L-band linac:

HALHF Parameter Table

$Machine\ parameters$	Unit	Va	alue
Center-of-mass energy	GeV	2	50
Center-of-mass boost		2.13	
Bunches per train		1	00
Train repetition rate	${ m Hz}$	1	00
Average collision rate	kHz	10	
Luminosity	${\rm cm}^{-2} {\rm \ s}^{-1}$	0.81×10^{34}	
Luminosity fraction in top 1%		57%	
Estimated total power usage	MW	100	
Colliding-beam parameters		e^{-}	e^+
Beam energy	GeV	500	31.25
Bunch population	10^{10}	1	4
Bunch length in linacs (rms)	$ m \mu m$	18	75
Bunch length at IP (rms)	$ m \mu m$	75	
Energy spread (rms)	%	0.15	
Horizontal emittance (norm.)	$ m \mu m$	160	10
Vertical emittance (norm.)	$ m \mu m$	0.56	0.035
IP horizontal beta function	$\mathbf{m}\mathbf{m}$	3.3	
IP vertical beta function	mm	0.1	
IP horizontal beam size (rms)	nm	729	
IP vertical beam size (rms)	nm	7.7	
Average beam power delivered	MW	8	2
Bunch separation	ns	80	
Average beam current	μA	16	64


RF linac parameters		
Average gradient	MV/m	25
Wall-plug-to-beam efficiency	%	50
RF power usage	MW	47.5
Peak RF power per length	MW/m	21.4
Cooling req. per length	kW/m	20
PWFA linac and drive-beam pa	rameters	
Number of stages		16
Plasma density	cm^{-3}	7×10^{15}
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	\mathbf{m}	5
Energy gain per stage ^a	${ m GeV}$	31.9
Initial injection energy	${ m GeV}$	5
Driver energy	${ m GeV}$	31.25
Driver bunch population	10^{10}	2.7
Driver bunch length (rms)	$\mu\mathrm{m}$	42
Driver average beam power	MW	21.4
Driver bunch separation	ns	5
Driver-to-wake efficiency	%	72
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	38
Wall-plug-to-beam efficiency	%	19
Cooling req. per stage length	kW/m	100

^a The first stage is half the length and has half the energy gain of the other stages (see Section V. 4).

Cost Estimate

Scale from existing costed projects wherever possible – mostly ILC – very rough – not better than 25% accurate.

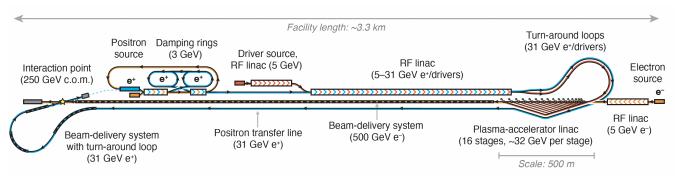
Subsystem	Original	Comment	Scaling	HALHF	Fraction
	$\cos t$		factor	$\cos t$	
	(MILCU)			(MILCU)	
Particle sources, damping rings	430	CLIC cost [69], halved for e^+ damping rings only ^a	0.5	215	14%
RF linac with klystrons	548	CLIC cost, as RF power is similar	1	548	35%
PWFA linac	477	ILC cost [47], scaled by length and multiplied by 6 ^b	0.1	48	3%
Transfer lines	477	ILC cost, scaled to the ~4.6 km required ^c	0.15	72	5%
Electron BDS	91	ILC cost, also at 500 GeV	1	91	6%
Positron BDS	91	ILC cost, scaled by length ^d	0.25	23	1%
Beam dumps	67	ILC cost (similar beam power) + drive-beam dumps ^e	1	80	5%
Civil engineering	2,055	ILC cost, scaled to the ~10 km of tunnel required	0.21	476	31%
			Total	1,553	100%

^a Swiss deflator from $2018 \rightarrow 2012$ is approximately 1. Conversion uses Jan 1st 2012 CHF to \$ exchange rate of 0.978.

^b Cost of PWFA linac similar to ILC standard instrumented beam lines plus short plasma cells & gas systems plus kickers/chicanes.

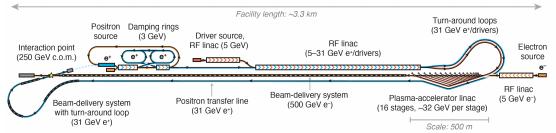
The factor 6 is a rough estimate of extra complexity involved.

^c The positron transfer line, which is the full length of the electron BDS, dominates; this plus two turn-arounds, the electron transport to the positron source plus small additional beam lines are costed.


^d The HALHF length is scaled by \sqrt{E} and the cost assumed to scale with this length.

^e Length of excavation and beam line taken from European XFEL dump.

Cost Estimate



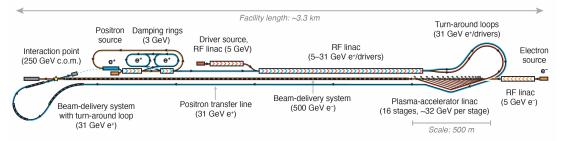
 Snowmass study ITF of various accelerator costs gives ILC Higgs Factory Total Project Cost (TPC) (= US accounting) of \$7 - 12B (2021 \$). Scaling this by the value estimate (~European accounting) of HALHF/ILC@Snowmass gives HAHLF TPC ~ \$2.3 -3.9B: c.f. EIC TPC = \sim < \$2.8B. Direct estimate by ITF people (Seeman/Gessner) gives \$4.46B.

Running Costs

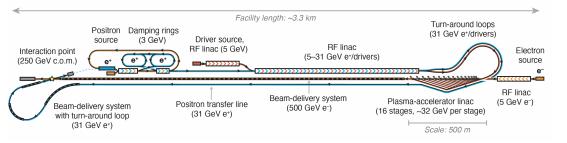
- Dominated by power to produce drive beams.
- (100*16*4.3nC + 6.4nC)*100 => 47.5 MW@50% eff.
- Damping rings: 2*10 MW.
- Cooling assume similar to CLIC => 50% of RF power (corresponds to 20 kW/m).
- For magnets and other conventional sources assume ~9 MW.
- Gives total power requirement ~ 100 MW similar to other proposals.

Experimentation at HALHF

• See Antoine's talk following.


Upgrades

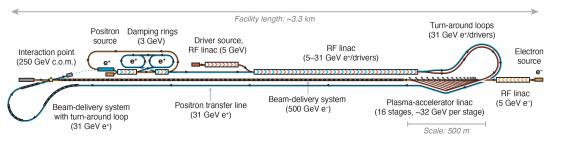
- Energy upgrade: keep e⁺ energy same increases γ as E increases experiments more and more difficult and running costs increase; more attractive to increase e⁺ energy to keep γ ~ constant.
- Keeping γ constant by lengthening conventional linac needs E(e⁺) ~ 47.5 GeV and E(e⁻) ~ 760 GeV for E_{cm} = 380 GeV.
- Produce e⁺ polarization via ILC-like scheme ideas exist for E(e⁻) 500 GeV.
- Also upgrades to produce 2 IPs and γ γ collider.
- If e⁺ can be accelerated, then conversion to symmetric multi-TeV collider straight-forward.



HALHF benefits from maximal asymmetry.

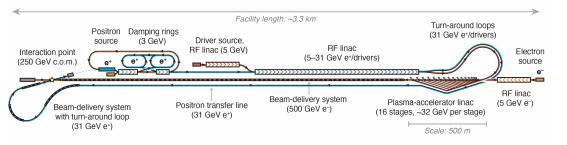
- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward but requires > a decade of significant R&D.

B. Foster, CEPC Workshop, 10/23



- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- "Conventional" design work needed: DR with high bunch charge; heavily loaded linac; BDS...

B. Foster, CEPC Workshop, 10/23

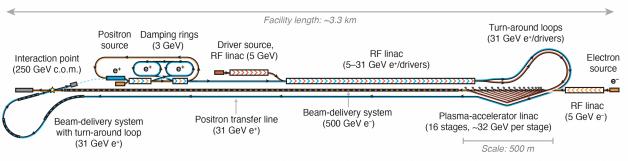


- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- "Conventional" design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).

- HALHF benefits from maximal asymmetry.
- Even if e⁺ acceleration not a problem, HALHF could still be best way forward – but requires > a decade of significant R&D.
- "Conventional" design work needed: DR with high bunch charge; heavily loaded linac; BDS...
- PWFA R&D: higher accelerated charge (x ~10), higher repetition rate (x ~1000), plasma-cell power dissipation (x ~1000), beam jitter reduction (x ~10-100).
- HALHF "kick-off" meeting held @ DESY on 23.10.23

Backup Slides

HALHF Parameters cf ILC & CLIC



Parameter	Unit	HA.	HALHF		CLIC
		e^-	e^+	e^-/e^+	e^-/e^+
Center-of-mass energy	${ m GeV}$	250		250	380
Center-of-mass boost		2.	13	-	-
Bunches per train		10	00	1312	352
Train repetition rate	${ m Hz}$	100		5	50
Average collision rate	m kHz	10		6.6	17.6
Average linac gradient	MV/m	1200	25	16.9	51.7
Main linac length	km	0.41	1.25	7.4	3.5
Beam energy	${ m GeV}$	500	31.25	125	190
Bunch population	10^{10}	1	4	2	0.52
Average beam current	$\mu\mathrm{A}$	16	64	21	15
Horizontal emittance (norm.)	$\mu \mathrm{m}$	160	10	5	0.9
Vertical emittance (norm.)	$\mu\mathrm{m}$	0.56	0.035	0.035	0.02
IP horizontal beta function	$\mathbf{m}\mathbf{m}$	3.3		13	9.2
IP vertical beta function	$\mathbf{m}\mathbf{m}$	0.1		0.41	0.16
Bunch length	$\mu\mathrm{m}$	75		300	70
Luminosity	$cm^{-2} s^{-1}$	0.81×10^{34}		1.35×10^{34}	2.3×10^{34}
Luminosity fraction in top 1%		57%		73%	57%
Estimated total power usage	MW	100		111	168
Site length	km	3.3		20.5	11.4

Project Staging

- •Any project of this size and scope needs a ~10% prototype. A few cells producing useful currents of e⁻ at few 100 GeV would be very interesting for SFQED.
- Once satisfactory performance demonstrated, remaining elements can be constructed and then running at Z can be used to tune up machine and detector.