New Developments in Generative Methods for Event Simulation

E. Buhmann², T. Buss², S. Diefenbacher^{2,3}, E. Eren¹, F. Gaede¹, G. Kasieczka², W. Korcari², A. Korol¹, K. Krüger¹, **P. McKeown^{1*}**, L. Rustige¹

¹ Deutsches Elektronen Synchrotron, DESY
² University of Hamburg, UHH
³ Lawrence Berkeley National Laboratory, LBNL

* peter.mckeown@desy.de

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Introduction

- Full MC simulation (Geant4) is computationally expensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer high fidelity simulation with significant speed up:
 - More sustainable computing

CMS Collaboration, Offline and Computing Public Results (2022), https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Highly Granular Calorimeters for Future Experiments

- Widely planned for future experiments: e.g. HL-LHC, e+e- Higgs Factories
- Case Study: International Large Detector (ILD) concept for the International Linear Collider (ILC)
- Optimized for Particle Flow
 - Reconstruct each individual particle in subdetector
 - Obtain optimal detector resolution
- High granularity calorimeters:
 - ECAL: Si-W 5mm x 5mm
 - HCAL: Sci-Fe 30mm x 30 mm

Highly Granular Calorimeters for Future Experiments

- Widely planned for future experiments: e.g. HL-LHC, e+e- Higgs Factories
- Case Study: International Large Detector (**ILD**) concept for the International Linear Collider (ILC)
- **Optimized for Particle Flow**
 - Reconstruct each individual particle in subdetector ٠
 - Obtain optimal detector resolution ٠
- High granularity calorimeters:
 - 5mm x 5mm ECAL: Si-W
- ~ 80 million channels

c.f. a few cm^2 for

(before High Lumi)

- HCAL: Sci-Fe 30mm x 30 mm ~ 8 million channels

Common Generative Models

- VAE¹: Encoder-decoder structure
- GAN²: Adversarial feedback from discriminator

¹D.P. Kingma, M. Welling. Auto-encoding Variational Bayes (2014), <u>arXiv:1312.6114</u>

²Goodfellow et. al., Generative Adversarial Nets (2014), <u>arXiv:1406.2661</u>

Initial Progress: Photons and Pions

- Achieved **high fidelity** generation of **photon** and **pion** showers with **BIB-AE** architecture (and post processing)
 - 90 deg impact angle, fixed position in calorimeter
 - Fixed regular 3D grid geometry (O(10-100k) voxels)

BIB-AE: Bounded Information Bottleneck Auto-Encoder as well as comparison to GAN and WGAN ...

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, Buhmann et al., <u>arXiv:2005.05334</u>, Comput Softw Big Sci 5, 13 (2021)

Hadrons, Better, Faster, Stronger Buhmann, P.M. et al, <u>arXiv:2112.09709</u>, MLST 3 2, 025014 (2022),

Towards An Application In Realistic Detector Simulation

Energy and Angular Conditioning

- Photons incident at fixed position
- Extend **BIB-AE** architecture
- Vary incident energy and polar angle
 - Large training sample 500k showers
 - Uniform in [10-100 GeV, 30-90 deg]
 - Test/validation samples at dedicated energies and angles

30x60x30 grid

Angular Conditioning Performance

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

• Sim level angle reconstruction

Angular Conditioning Performance

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

• **Sim** level angle reconstruction

- **Rec** level angle reconstruction
 - After full reconstruction with PandoraPFA

Energy Conditioning Performance

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

Performance After Reconstruction

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

DEST (IEIL) AND WOIST (IIGHT) LEST POINT - CACE DESY. | ILD Meeting | Peter McKeown | 05.09.2023

Adding Another Angle

- Need to condition on • energy, theta and phi for full application
- **Extending phase space** • can be challenging
- Work in progress •

DESY. | ILD Meeting | Peter McKeown | 05.09.2023

Layer-to-Layer Normalising Flow Model

¹ Fast and accurate simulations of calorimeter showers with normalizing flows, Krause & Shih., <u>Phys. Rev. D 107, 113003</u>

¹ L2LFlows: Generating High-Fidelity 3D Calorimeter Images, Diefenbacher et al., <u>arXiv:2302.11594</u>

- Fully invertible model
- Learns to sequentially produce shower shape in each layer
- Extends previous work¹ to scale to full shower
- Superior simulation-level performance vs a BIB-AE across a range of observables
- More work required to achieve competitive simulation speed

- **Regular grid models** show very high physics fidelity yet they have **two drawbacks**:
 - Low occupancy → lots of superfluous compute
 - Irregular detector geometries → back projection creates artifacts

- Solution: **point cloud** based models
- Use **additional information** in the Geant4 simulation:
 - Much higher granularity than physical geometry
 - Gain geometry independence
- Apply diffusion model to clustered Geant4 steps for photon showers

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., <u>arXiv:2305.04847</u>, Submitted to JINST

DESY. | ILD Meeting | Peter McKeown | 05.09.2023

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., <u>arXiv:2305.04847</u>, Submitted to JINST

- Overall observe very good physics fidelity
- First successful application of diffusion models to (high granularity) calorimeter simulation using point clouds

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., <u>arXiv:2305.04847</u>, Submitted to JINST

- Overall observe very good physics fidelity
- First successful application of diffusion models to (high granularity) calorimeter simulation using point clouds
- Problem: speed-up provided by original diffusion model is small

Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up	
CPU	Geant4			3914.80 ± 74.09	$\times 1$	
	CALOCLOUDS	100	1	3146.71 ± 31.66	×1.2	
	CALOCLOUDS II	25	1	651.68 ± 4.21	$\times 6.0$	
	CALOCLOUDS II (CM)	1	1	84.35 ± 0.22	$\times 46$	
GPU	CALOCLOUDS	100	64	24.91 ± 0.72	$\times 157$	
	CaloClouds II	25	64	6.12 ± 0.13	$\times 640$	
	CaloClouds II (CM)	1	64	2.09 ± 0.13	$\times 1873$	

DESY. | ILD Meeting | Peter McKeown | 05.09.2023

Work in progress

Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up
CPU	Geant4			3914.80 ± 74.09	$\times 1$
	CALOCLOUDS	100	1	3146.71 ± 31.66	$\times 1.2$
	CaloClouds II	25	1	651.68 ± 4.21	$\times 6.0$
	CALOCLOUDS II (CM)	1	1	84.35 ± 0.22	×46 <
GPU	CALOCLOUDS	100	64	24.91 ± 0.72	$\times 157$
	CaloClouds II	25	64	6.12 ± 0.13	$\times 640$
	CaloClouds II (CM)	1	64	2.09 ± 0.13	$\times 1873$

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., <u>arXiv:2305.04847</u>, Submitted to JINST

 Overall observe very good physics fidelity

full spectrum

CALOCLOUDS

Geant4

20

30

 10^{3}

MeV

sum

energy 101

 $10^{(}$

Ó

10

layers

- First successful application of diffusion models to (high granularity) calorimeter simulation using point clouds
- Problem: speed-up provided by original diffusion model is small
- Solution: apply consistency distillation
 - Achieve x46 faster simulation than Geant4 on CPU
 - Publication in preparation

DESY. | ILD Meeting | Peter McKeown | 05.09.2023

Integration into the Full Simulation Chain

- Prototype library for running ML-based fast sim models: **DDFastShowerML** https://gitlab.desy.de/ilcsoft/ddfastshowerml
 - Use fast sim hooks in DDG4/Geant4 ٠
 - Use realistic, detailed detector models ٠
 - Currently only supports CPU ٠
 - Development ongoing ٠
 - Aim to have an easy to use library which can be adapted for • all types of ML architectures in DD4hep
 - **Essential** step to be able to study performance of model with ٠ full physics benchmarks
 - **Di-photon separations** ٠
 - Tau decays with photons ٠

ONNX, libtorch etc...

Endcap, barrel etc...

Conclusion

Achieved

- Energy and angular conditioning for EM showers with high physics fidelity
 - Strong performance after reconstruction with PandoraPFA
- Normalising flow model can reproduce shower observables with increased fidelity
- First successful generation of calorimeter showers as a point cloud
 - Achieve a high degree of **geometry independence**
- An initial implementation of a **prototype library** for interfacing with the full simulation chain

Next Steps

- Continue to improve simulation **speed** with models and **extend functionality** (e.g. additional angle)
- Study full physics benchmarks

Latent Space sampling

- **Relaxing regularisation** of latent space allows more information to be stored
 - Latent space deviates from a Normal distribution
- Employ **density estimation** to produce latent sample (**normalising flow**)
- Improve modeling of shower shape (center of gravity)

Buhmann et. al: Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web of Conferences 251, 03003 (2021)

CaloClouds: Data Preprocessing

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., <u>arXiv:2305.04847</u>, Submitted to JINST

- Using all Geant4 steps directly is computationally prohibitive
 - 40k Geant4 steps at 90 GeV
- Apply preprocessing step:
 - Project Geant4 steps into ultra-high granularity grid (36 times more granular than ILD ECAL)
 - Reduce number of points by factor ~7:
 - Up to 6000 space points
- Again study photons in ILD ECAL
 - 10-100 GeV, 90 deg impact
 - Additionally check the effects of varying incident point (hence geometry)

CaloClouds: Diffusion Model Architecture

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., <u>arXiv:2305.04847</u>, Submitted to JINST

- Training of PointWise Net with EPiC Encoder (e-Print: 2301.08128)
- Inference uses two additional flows for number of space points, calibration and latent space

Effects Of Pre-clustering To Ultra-high Granularity

example:

Geant4 90 GeV shower in layer 21 with full round-trip pre-clustering and back-projection

x4 grid

.08

0.06

-0.04

-0.02

10.00

overlay of 2k Geant4 90 Gev showers in layer 21 with full round-trip pre-clustering and back-projection

relative difference per cell < 2% in core of shower

relative difference with lower granularity

40

20 30 X [mm]

30

DESY. | ILD Meeting | Peter McKeown | 05.09.2023

CaloClouds: Effects Of Varying Geometry

Consistency Model

Timing Of Generative ML Methods

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	×1
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	$\times 56 \times 8$
GPU	WGAN BIB-AE	$egin{array}{c} 0.264 \pm 0.002 \ 2.051 \pm 0.005 \end{array}$	$\begin{array}{c} \times 10167 \\ \times 1309 \end{array}$

BIB-AE/WGAN, pion showers 10-100 GeV uniform

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	4417 ± 83	×1
	BIB-AE	362 ± 2	$\times 12$
GPU	BIB-AE	4.32 ± 0.09	×1022

BIB-AE, photon showers 10-100 GeV - 30-90 deg uniform

Simulator	Hardware	Batch size		time [ms]	Speedup	
GEANT4	CPU	1	4081.53	\pm 169.92	$\times 1.0$	
Flow	CPU	1	1746.61	\pm 64.50	×2.3	N
		10	392.61	\pm 0.34	×10.4	Ľ
		100	228.86	\pm 7.09	×17.8	S
		1000	275.55	\pm 3.01	×14.8	
Flow	GPU	1	2471.07	\pm 70.20	×1.7	
		1000	3.39	\pm 0.09	×1202.3	

Normalising Flow, photon showers 10-100 GeV, 90 deg