Optimizing the Higgs self-coupling measurement at ILC and C³

ILD SW & Analysis Meeting | 2023/10/04

Bryan Bliewert

DESY & Technical University of Munich

The Matrix Element Method (MEM)

> method for calculating event-likelihoods, use cases:

- process discrimination (Neyman-Pearsson lemma)
- parameter estimation

> Goal here: separate ZHH vs. ZZH $\rightarrow \mu^{-}\mu^{+}b\overline{b}b\overline{b}$

 \succ for each event y and process *i* (ZHH, ZZH), solve

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int |M_i(\mathbf{x}, \mathbf{a})|^2 W_i(\mathbf{y} \mid \mathbf{x}) \epsilon_i(\mathbf{x}) d\Phi_n(\mathbf{x})$$

- $M_i(x, a)$ LO matrix element (HELAS-based Physsim, J. Tian)
- $W_i(y|x)$ detector transfer functions: PDF for measuring y given x; fitted from ILD full-simulation

- **a** : theory parameters; e.g. λ_{HHH} $A_i(a)$: signal acceptance
- $\epsilon_i(\mathbf{x})$: detector efficiency

Optimizing the Higgs self-coupling measurement at ILC and C³ | Bryan Bliewert | ILD SW & Analysis Meeting | 2023/10/04

MEM generator level check

> on generator level: integration reduces to evaluation of matrix elements

discriminator:
$$D_{bkg}(y) = \left(1 + \frac{P_{ZZH}(y)}{P_{ZHH}(y)}\right); 0 \le D_{bkg} \le 1$$

> perfect separation of ZHH and ZZH event data, as expected

Detector transfer functions (I)

PDF for energies/angles
 between reconstructed
 and parton-level particles

"conventional approach": fitting transfer functions manually

Detector transfer functions (II)

> For well-measured quantities (e.g. leptons): δ -function

$$W_{lep}(E_p, E_{reco}) = \delta(E_p - E_{reco})$$

Results: Process discrimination

- ISR still to be addressed
- Computationally intensive: integration time $o(\min)$ per event

Outlook

- > ML-based approaches for increasing speed and performance
 - invertible neural network (INNs) for transfer functions $W_i(x|y)$
 - Graph Neural Networks (GNNs) for jet clustering (major source of error in analysis)

- Promising additions to the conventional approach:
 - (weighted) average over jet-matching combinatorics
 - further consistency checks, using Whizard LO matrix elements
 - addressing ISR

Backup

> Distributions before and after including transfer functions

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int W_i(\mathbf{y} \mid \mathbf{x}, \mathbf{a}) |M_i(\mathbf{x}, \mathbf{a})|^2 T_i(\mathbf{x}, \mathbf{a}) d\Phi_n$$

$$d\boldsymbol{\Phi}_n = \prod_{i}^{\mu^-,\mu^+,b_1,\overline{b_1},b_2,\overline{b_2}} \frac{d^3\boldsymbol{p}_i}{(2\pi)^3 2E_i}$$

> leptons well measured \rightarrow no integration for μ^-, μ^+

- conservation of four momentum and narrow-widthapproximation
 reduction of integration to 7 dimensions
- > integration variables: Θ_{b1} , ϕ_{b1} , ρ_{b1} , θ_{b1b} , ϕ_{b1b} , ρ_{b2} , Θ_{b2}
- with VEGAS+ and integrand in C++, computation time
 1-3 minutes per process (including setup of integration grid)
- "accept-and-reject" MC

itn	integral	wgt average	chi2/dof	Q	
1	4.2(3.6)e-09	4.2(3.6)e-09	0.00	1.00	
2	6.7(2.7)e-10	6.9(2.7)e-10	0.94	0.33	
3	6.0(2.1)e-10	6.4(1.7)e-10	0.50	0.60	
4	2.69(55)e-10	3.05(52)e-10	1.81	0.14	
5	3.49(58)e-10	3.24(39)e-10	1.44	0.22	
6	2.96(43)e-10	3.12(29)e-10	1.20	0.31	
7	5.0(1.2)e-10	3.23(28)e-10	1.42	0.20	
8	4.78(94)e-10	3.35(27)e-10	1.58	0.14	
9	8.6(2.2)e-10	3.43(27)e-10	2.11	0.03	
10	5.9(1.8)e-10	3.48(26)e-10	2.07	0.03	
result = 3.48(26)e-10					

itn	integral	wgt average	chi2/dof	Q		
1	1.58(18)e-09	1.58(18)e-09	0.00	1.00		
2	1.68(19)e-09	1.63(13)e-09	0.13	0.72		
3	1.94(19)e-09	1.72(11)e-09	0.96	0.38		
4	1.91(13)e-09	1.800(82)e-09	1.04	0.37		
5	1.98(27)e-09	1.815(79)e-09	0.88	0.48		
6	2.73(99)e-09	1.821(78)e-09	0.88	0.50		
7	1.78(10)e-09	1.807(62)e-09	0.74	0.61		
[] 8	2.03(17)e-09	1.834(59)e-09	0.86	0.54		
9	1.72(13)e-09	1.816(54)e-09	0.82	0.58		
10 1.813(83)e-09 1.815(45)e-09 0.73 0.68 result = 1.815(45)e-09 Q = 0.68						

MEM results for example ZHH (top) and ZZH (bottom) event