ILD Analysis/Software Meeting

e⁺e⁻ to Light Quarks

Yuichi Okugawa Oct 5th, 2023

Introduction

Di-fermion Production

- Di-fermion production
 - \circ e⁺e⁻ -> uu, dd, ss
 - CME 250 GeV.
 - eL pR
 - \circ Int. Lumi. 4.2 ab⁻¹

• Differential Cross Section

• Couplings can be extracted from helicity amplitudes included within the Differential Cross section

 $\frac{d\sigma}{d\cos\theta} = S(1+\cos^2\theta) + A\cos\theta$

• Extracted via forward-backward asymmetry. (AFB)

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

Energy	Process	Goal of measurements
$91{ m GeV}$	$e^+e^- \to Z^0$	Z^0 physics and calibration
$250{ m GeV}$	$e^+e^- \to Z^0 H$	Higgs couplings
	$e^+e^- ightarrow far{f}$	Z^0/γ couplings
$350{ m GeV}$	$e^+e^- ightarrow t \bar{t}$	top mass precision
	$e^+e^- \to \nu\bar{\nu}H$	Higgs couplings
$500{ m GeV}$	$e^+e^- \to t\bar{t}$	top couplings
	$e^+e^- \to t\bar{t}H$	Higgs-top coupling
	$e^+e^- \to Z^0 H H$	Higgs self coupling
$1000{ m GeV}$	$e^+e^- \rightarrow \nu \bar{\nu} H H$	Higgs self coupling

Towards Light Quarks

Light Quark Pair Reconstruction

- u, d are inseparable
- Both need to be separated from s-quark pair production process from the mixed sample.
- Pion ID can be used to extract combined parameters of AFB.
- One can check its consistency with the SM by seeking their combined EW coupling.
- Based on this uu/dd precise measurements, the distribution can be subtracted from uds mixture.

$$rac{d\sigma}{d\cos heta} = (S_u+S_d)(1+\cos^2 heta)+(A_u+A_d)\cos heta$$

Towards Light Quarks

- Polar angle distribution of generated ss, uu, dd production is shown.
- dd distribution is 'flipped'. This is because we discovered that majority of dd events contain hadronization via d→K*→K⁺π⁻
- The kaon ID method used here still relies on MC generated information to consolidate the analysis by searching maximal efficiency and precision achieved.

Towards Light Quarks

- Polar angle distribution of generated ss, uu, dd production is shown.
- dd distribution is 'flipped'. This is because we discovered that majority of dd events contain hadronization via d→K*→K⁺π⁻
- The kaon ID method used here still relies on MC generated information to consolidate the analysis by searching maximal efficiency and precision achieved.

Event Structure

Event Structure

Event Structure

Progress since the ILD meeting on June

What has been done and what needs to be done?

Efficiency

- Quantitative analysis on the efficiency studies.
- Consistency throughout the entire polar angle, in order to avoid bias on final AFB measurements.
- The efficiency correction to retrieve the original number of entries. (explained in coming slides)

Background studies

- Dedicated background analysis was conducted for the following processes.
 - Radiative return
 - Full hadronic WW
 - Full hadronic ZZ
 - o qqH
- All processes are the major concern of backgrounds towards e+e- -> qqbar analysis.
- Preselections were applied to reject such backgrounds.

Background Analysis

• Background processes

- Radiative Return (2f)
- WW hadronic (4f)
- ZZ hadronic (4f)
- Higgs (e1e2H)

• Preselections

- Cut 1: Photon veto (photon jet)
 - E < 115 GeV
 - |cosθ| < 0.97
- Cut 2: Acolinearity
 - sinΨacol < 0.3
- Cut 3: Invariant mass
 - Mjj > 140 GeV
- Cut 4: Jet y23
 - y23 < 0.02
- (Cut5: LPFO acol)
 - cosθ_{L1,L2} > 0.97

• Signal definition

- QQbar Acolinearity
 - sinΨacol < 0.3
- Invariant mass
 - Mqq > 140 GeV

sinΨ

After cut 1

- Cut 1: Photon veto (photon jet)
 - E < 115 GeV
 - |cosθ| < 0.97

Invariant Mass

After cut 1 & cut 2

- Cut 1: Photon veto (photon jet)
 - E < 115 GeV
 - |cosθ| < 0.97
- Cut 2: Acolinearity
 - \circ sin Ψ acol < 0.3

Invariant Mass

After cut 1 & cut 2 & cut 3

- Cut 1: Photon veto (photon jet)
 - E < 115 GeV
 - |cosθ| < 0.97
- Cut 2: Acolinearity
 - sinΨacol < 0.3
- Cut 3: Invariant mass
 - Mjj > 140 GeV

Preselection Efficiency?

eLpR									
process	P2f_z_h	P2f_z_h	P2f_z_h	P2f_z_h	P2f_z_h	P2f_z_h	P4f_ww_h	P4f_zz_h	Pe1e1h
qqbar	dd	uu	SS	сс	bb	rr	bg	bg	bg
cut1	92.74%	93.13%	92.32%	93.34%	93.30%	54.90%	89.62%	91.13%	74.95%
cut2	78.06%	78.92%	77.22%	79.41%	79.94%	1.97%	18.63%	15.97%	5.72%
cut3	78.00%	78.86%	77.16%	79.30%	79.55%	1.29%	17.65%	14.98%	4.56%
cut4	68.98%	69.75%	68.19%	69.74%	69.48%	0.51%	7.43%	7.47%	2.31%
cut5	59.00%	59.96%	58.08%	60.22%	59.89%	0.23%	3.98%	2.88%	1.00%

eRpL									
process	P2f_z_h	P2f_z_h	P2f_z_h	P2f_z_h	P2f_z_h	P2f_z_h	P4f_ww_h	P4f_zz_h	Pe1e1h
qqbar	dd	uu	SS	сс	bb	rr	bg	bg	bg
cut1	92.66%	93.19%	92.26%	93.40%	93.22%	52.58%	94.03%	89.46%	74.97%
cut2	77.97%	79.01%	77.11%	79.49%	79.84%	1.85%	14.90%	16.64%	5.74%
cut3	77.91%	78.95%	77.05%	79.39%	79.44%	1.19%	13.22%	15.68%	4.58%
cut4	68.89%	69.84%	68.06%	69.82%	69.38%	0.46%	3.33%	8.11%	2.33%
cut5	58.88%	60.07%	57.96%	60.35%	59.76%	0.22%	1.65%	3.26%	1.02%

Particle Identification

PID with dE/dx

dE/dx Particle Identification

- TPC provides information on average dE/dx values for each track.
- Bethe-Bloch formula tells each particle type has unique dE/dx vs p function.

Leading PFO

- uu & dd hadronize into pions or kaons.
- Those hadrons will possess high momentum among jet constituents
- The PFO with the highest momentum in a jet is called the Leading PFO (LPFO)

dE/dx vs p

Efficiency

cuts [i] = {p, TPC, offset, PID, SPFO, charge}

$$egin{aligned} \epsilon_i &= rac{N_{i+1}}{N_i} \ N_i &= N_{det,ISR} \cdot \prod_0^i \epsilon_i \end{aligned}$$

Double Tagging Criteria

Momentum

• p > 15 GeV

- TPC hits
 - no cut at the moment
- Offset

.

- 1.0 mm
- PID
 - dEdx value cut
- SPFO
 - \circ \qquad Veto event when there is a close competitor of LPFO with opposite charge

Efficiency

Polar Angle Results

Polar Angle (uu)

Polar Angle (dd)

Polar Angle (uu)

• ud mixing

- Both Gen and Reco polar angle from uu and dd were added.
- Generated dd is scaled to 0.9 upon addition
 - this to due to difference in selection efficiency between uu and dd?
- Fit between $|\cos\theta| < 0.9$ is performed

Fit Results

uu process

	S	σS	А	σΑ	
Gen	2.924e5	5.05e1	-4.910e5	1.19e2	
Reco	2.061e5	3.80e2	-3.513e5	9.28e2	
	4	AFB		/ ndf	
Gen	-0.6	-0.62957		22 / 88	
Reco	-0.6	-0.63553		132.781 / 88	

ud process

	S	σS	А	σΑ	
Gen	3.359e5	4.47e1	-1.060e5	1.16e2	
Reco	3.364e5	5.27e2	-1.143e5	1.40e3	
	4	AFB		/ ndf	
Gen	-0.1	-0.118425		38 / 88	
Reco	-0.1	27492	160.860 / 88		

dd process

	S	σS	А	σΑ
Gen	2.015e5	4.19e1	3.794e5	9.45e1
Reco	1.304e5	3.64e2	2.364e5	8.96e2
	4	AFB		/ ndf
Gen	0.7	0.705765		76 / 88
Reco	0.6	0.681675		34 / 88

chi2 / ndf = 1.83

Polar Angle (uu)

Reconstructed m

LIT

0.4

0.6

0.8

cosθ

Polar Angle (dd)

Polar Angle (dd)

Polar Angle (ud)

- ud mixing
 - Same mixing as eLpR

Fit Results

uu process

	S	σS	А	σΑ
Gen	8.753e4	2.52e1	-1.663e5	6.01e1
Reco	8.738e4	2.69e2	-1.685e5	6.84e2
	4	AFB		/ ndf
Gen	-0.7	-0.712651		24 / 78
Reco	-0.7	-0.723176		23 / 78

ud process

	S	σS	А	σΑ
Gen	1.158e5	2.64e1	-1.461e5	6.57e1
Reco	1.159e5	3.00e2	-1.493e5	7.71e2
	4	AFB		/ ndf
Gen	-0.4	-0.472885		43 / 88
Reco	-0.4	-0.482792		28 / 88

dd process

	S	σS	А	σΑ	
Gen	2.968e4	1.43e1	2.154e4	3.92e1	
Reco	2.868e4	1.81e2	1.941e4	5.01e2	
	4	AFB		/ ndf	
Gen	0.2	0.272170		75.6468 / 78	
Reco	0.2	0.253806		51 / 78	

chi2 / ndf = 0.75

34

eLpR

Entries / Int. Lumi. dd 40 uū Rad. Ret. WW . . . 20 ZZ ----- qqH 100 80 60 40 20

-0.8 -0.6 -0.4 -0.2 0

0

1.1.1

0.2

0.4

0.6

0.8

cosθ

eRpL

ssbar mixing

- The original motivation was to eliminate the contribution from the uu and dd effect by selecting the events with leading pions.
- After the selection, one can subtract the events upon ss analysis, by requiring the leading PFO not to be identified as pion.
- This assumes that the ss can well be isolated from uu and dd.

eLpR

* Efficiency correction was removed for these plots for technical reasons.

eRpL

Mode	Data Events	MC prediction
K^+K^-	1290	1312.2
$K^+\Lambda^0, K^-\bar\Lambda^0$	219	213.5
$\Lambda^0 \bar{\Lambda}^0$	17	13.7
$K^{\pm}K^0_s$	1580	1617.3
$\Lambda^0 K^0_s, \bar{\Lambda}^0 K^0_s$	193	194.1
Total:	3299	3350.8

Table 6.6: Summary of the selected event sample for 5 tagging modes in data and simulation.

- (SLAC-Report, 1999)
- There are limited number of modes where ss process can produce hard pions.
- SLAC report suggests that there are possible contributions from Λ0 or K0-short which can further disintegrate into Pion
- Although the Λ are suppressed using the offset cut, the final polar angle distribution clearly shows the substantial amount of contribution from ss.
- Possible solution could be veto the secondary LPFO not to be identified as Kaons.

Particle Identification

K/Pi ID purity

Truth PID of Reconstructed Leading Pion

Leading PFO

SPFO Check

Leading PFO (LPFO)

- Particle with *highest* momentum within a Jet.
- QQbar typically disintegrate into a pair of energetic Kaons or Pions.
- We choose LPFO among **charged PFOs** inside a jet.

Charge & Momentum

Impact Parameter

SPFO Check

dE/dx Minimum

 10^{2}

K Bethe-Bloch formula

SPFO Check

SPFO Check

Secondary PFO (SPFO) Check

- Find SPFO such that:
 - Charged Kaon
 - Charge must be opposite to LPFO Kaon (same sign does not create confusion)
 - Must have least 10 GeV momentum
- If there is such SPFO -> veto

Stability & Purity

Acceptance Correction

- Detector acceptance is not uniform throughout different polar angles.
- The reconstruction efficiency depends on the detector acceptance.
- Stability: Measure of detector resolution.
 - Stability act as reconstruction efficiency, if the ILD has 100% tracking efficiency.
- **Purity**: Purity for reconstructing Kaon and Pion

stability =
$$\frac{N_{rec} \cap N_{gen}}{N_{gen}}$$

purity = $\frac{N_{rec} \cap N_{gen}}{N_{reco}}$

Detector Acceptance (Kaon)

Purity and Stability

- Kaon identification purity & stability for **ss sample** is shown.
- High purity in Kaon identification can be seen
- Acceptance at the both edges of the detector drops above |cosθ| > 0.8
- Purity maintained above 0.8 on average.

Detector Acceptance (Pion)

Purity and Stability

- Pion identification purity & stability for **ud sample** without pion dE/dx cut
- High purity in pion identification can be seen
- Stability is also remains high before the pion dE/dx cut.
- Detector acceptance structure can be seen on both center and forward region of the detector.

Detector Acceptance (Pion)

Purity and Stability

- Pion identification purity & stability for **ud sample** is shown.
- High purity in pion identification can be seen
- Stability is lowered to average of 0.5 due to sever cut to pion dE/dx distance. (pi dE/dx dist > 0)
- Detector acceptance structure can be seen on both center and forward region of the detector.

Double Charge Measurements

Double Charge Measurements

Migrations

- Migration occurs when reconstructing a particle charge opposite to its true charge in the parton level.
 - > Misreconstruction from dE/dx distance PID.
 - > Acceptance
- Such mistake flips the reconstructed quark angle (assuming back-to-back scenario)
- pq-method
 - Also used in bbar measurements.
 - > Details can be found here. (Sviatoslav, 2017 p.104)

$$N_{acc} = p^2 N + q^2 N$$
$$N_{rej} = 2pq N$$
$$1 = p + q$$

$$p = \frac{N \pm \sqrt{N(N - 2N_{rej})}}{\frac{2}{N \mp \sqrt{N(N - 2N_{rej})}}}$$
$$q = \frac{N \mp \sqrt{N(N - 2N_{rej})}}{2}$$