RF DIPOLE DESIGN UPDATE

Suba De Silva Jean Delayen, Bob Rimmer

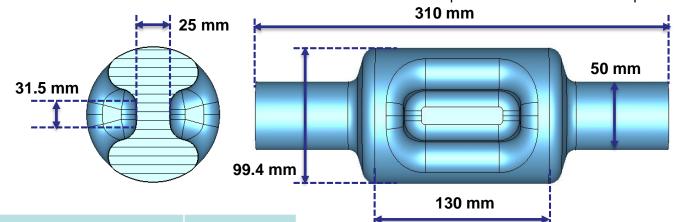
Center for Accelerator Science

Old Dominion University

and

Thomas Jefferson National Accelerator Facility

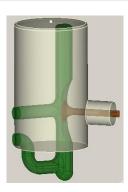
Outline


- RF Design
- Updated HOM Damping
- Stress Analysis
- Cavity Components for Fabrication
- Cavity Fabrication Sequence
- Material Dimensions
- Next Steps

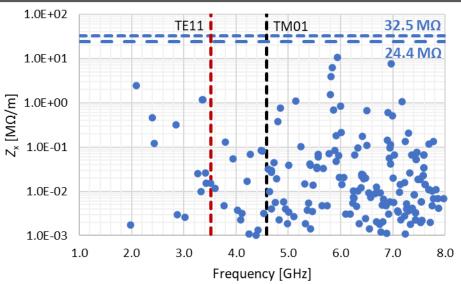
1.3 GHz RFD Cavity Design

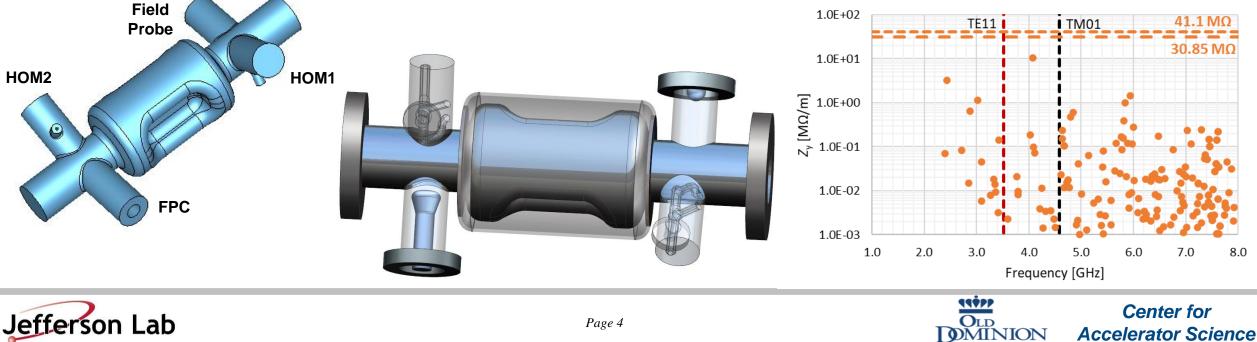
- Pole separation = 25 mm and beam aperture = 50 mm
- Optimized the pole shape (pole height and length):
 - To achieve peak surface field requirements of $E_p < 45$ MV/m and $B_p < 80$ mT

Cavity Dimensions (rf volume)	Value
Pole separation [mm]	25
Beam aperture [mm]	50
Cavity Length [mm] (flange-to-flange)	310
Cavity Diameter [mm]	99.4
Pole Length [mm]	85
Pole Height [mm]	31.5
Angle [deg]	22.5


	250 GeV	1 TeV
Max $V_{\rm t}$ per cavity [MV]	1.36	1.36
Total V _t [MV]	1.845	7.4
Number of cavities	2	6
V _t per cavity [MV]	0.9225	1.234
V _{t,max} / V _{t,operational}	1.47	1.10

Property	Value
Operating frequency [GHz]	1.3
1 st HOM [GHz]	2.089
$E_{\rm p}/E_{\rm t}^*$	3.81
$B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]	6.78
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	1.78
G [Ω]	129.88
<i>R</i> / <i>Q</i> [Ω] (V ² /P)	439.51
$R_{\rm t}R_{\rm s} \left[\Omega^2\right] ({\rm V}^2/{\rm P})$	5.71×10 ⁴
[*] Reference length $V/E_t = \lambda/2$ [mm]	115.3
V _t max per cavity [MV]	1.36
E _p [MV/m]	44.94
B _p [mT]	79.96
V _t per cavity [MV] (@ 125 GeV)	0.9225
Stored energy (U) [J]	0.237
$P_{\rm diss}$ [W] (for $R_{\rm s}$ = 30 n Ω)	0.45
Q_0 (for $R_s = 30 \text{ n}\Omega$)	4.33×10 ⁹

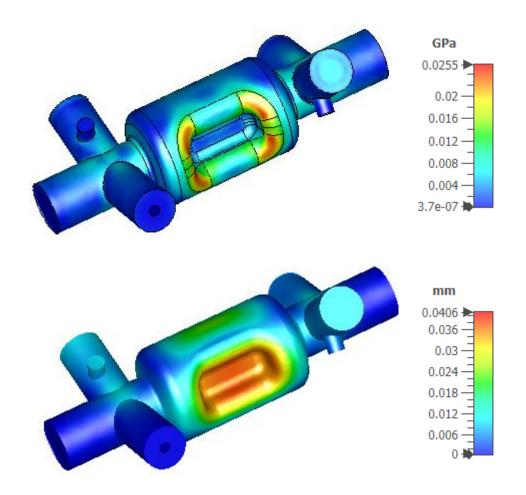

Updated Higher Order Mode Damping



TESLA type

HOM coupler

- Total impedance threshold:
 - For 125 GeV $\rightarrow Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
 - For 500 GeV $\rightarrow Z_x = 195.2 \text{ M}\Omega/\text{m}$ and $Z_y = 246.8 \text{M}\Omega/\text{m}$
- Damping achieved with two TESLA style HOM couplers placed on each of the beam pipes
 - No interference with He jacket



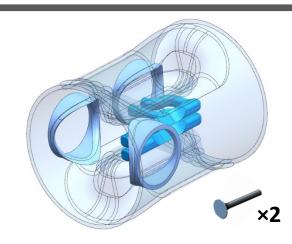
Stress Analysis

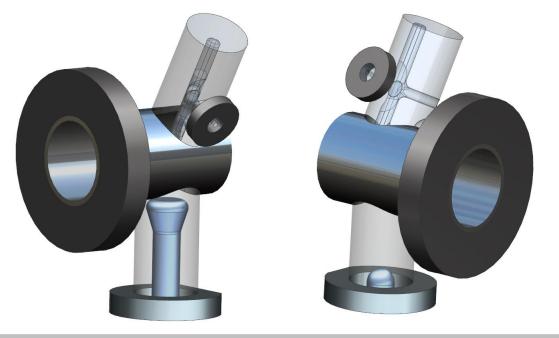
- Fine Grain Nb material properties at room temperature
 - (JLAB-TN-09-002 C100 Cryomodule Niobium Cavity Structural Analysis)
 - Young's modulus 82.7 GPa (1.2×10⁷ psi)
 - Poisson's ratio 0.38
- Allowable stress < 43.5 MPa (For FG)
- Cavity thickness 3 mm
- Boundary conditions Cavity constrained at beam pipes and FPC
- Maximum stress is 25.5 MPa
 - Doesn't require stiffening

on Lab

Cavity Components of 1.3 GHz RFD Cavity

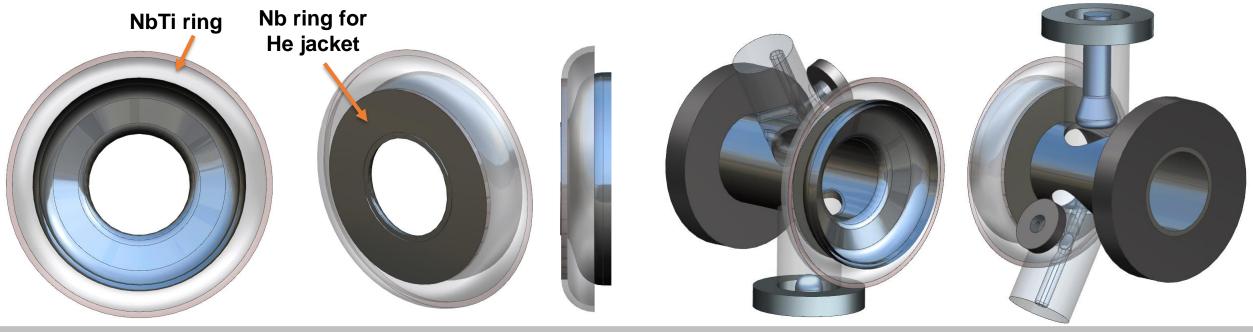
- Goal To fabricate and test a cavity prototype including couplers (FPC, FP with test antennas and HOMs)
- Cavity body thickness 3mm
- Thickness of beam pipes, HOM cans 3 mm
- HOM hooks and probes Nb
- FPC and FP probes Cu
- Cavity flanges SS 316LN with Cu gaskets
- Machined center body and end caps
- Ports fabricated by rolling Nb sheets (or from tubes)
 - Flanges brazed to Nb ports




Fabrication Sequence – Beam Pipe Assemblies

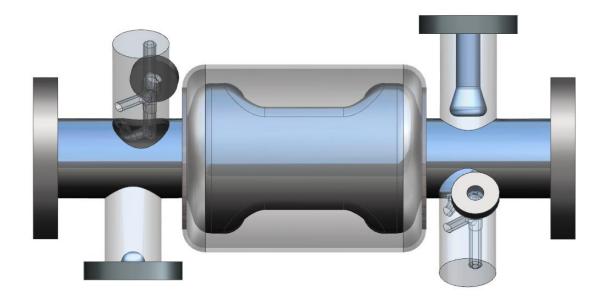
- 1. Form tubes for FPC, FP and 2 HOM couplers
- 2. Machine HOM hooks and probes from remaining material from center body
- 3. Machine transition piece from remaining material from center body
- 4. Weld HOM hooks to tubes
- 5. Weld transition pieces to beam tube
- 6. Weld HOM couplers, FPC and FP ports to beam tube
- 7. Braze HOM coupler flange, FPC and FP flanges
- 8. Braze beam tube flanges

Center for


Accelerator Science

Fabrication Sequence – Center Body and End Cap

- 1. Machine center body
 - No tuner adapter in the prototype cavity
- 2. Machine end caps including He jacket transition rings
- 3. Form NbTi rings for He jacket
- 4. Weld NbTi ring to end caps
- 5. Weld beam tube assemblies to end caps full penetration weld from inside the end cap



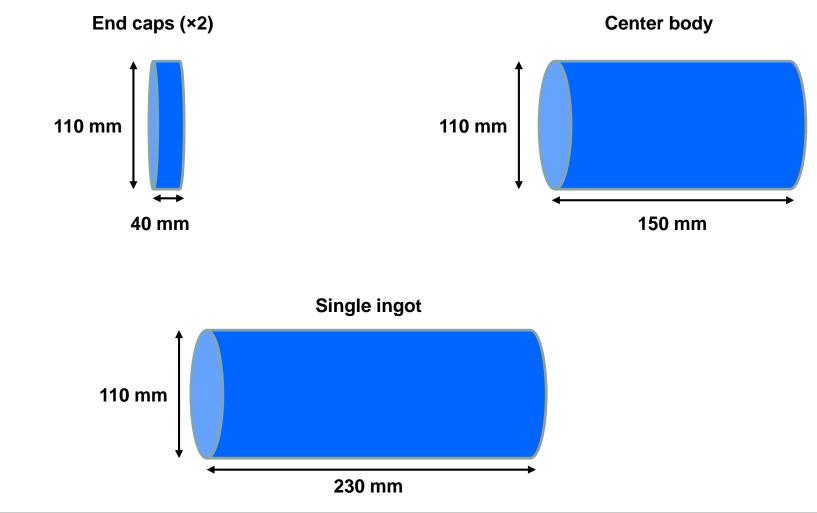
Fabrication Sequence – Cavity

- 1. Weld cavity center body to end cap assemblies
 - Clearance on NbTi rings to EBW the center body to end caps
- 2. TIG weld Ti He jacket
 - Ti He jacket will be welded in two halves

Page 9

Cavity Processing

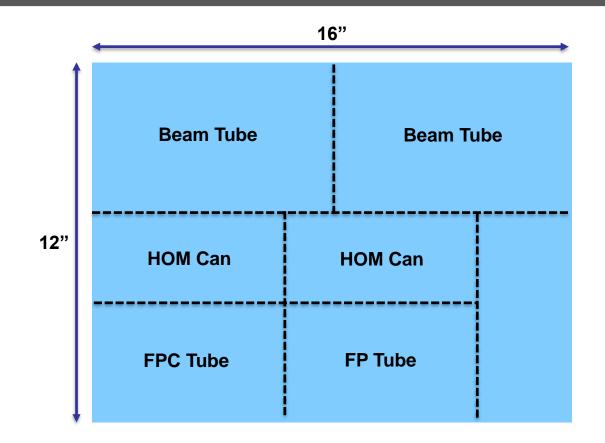
- Electropolishing of parts for bulk removal (120 microns)
 - Immerse parts EP acid bath in the fume hood
 - Need to develop procedure
- Light BCP on fully welded cavity in the BCP cabinet
 - Removal of 30 microns



• FG ingots for center body and two end caps

OLD DMINION UNIVERSITY

Center for


Accelerator Science

Material Dimensions

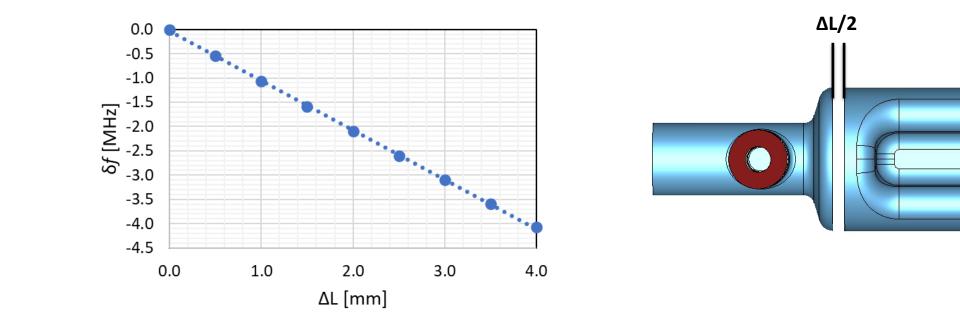
- FG Nb sheet for
 - Beam pipes
 - FPC and FP ports
 - HOM coupler cans

Cavity Part	Material Type	Dimensions [mm]	Qty
Beam tubes	Sheets	115 mm × 180 mm × 3 mm	2
HOM cans	Sheets	65 mm × 148 mm × 3 mm	2
FPC tube	Sheets	84 mm × 148 mm × 3 mm	1
FP tube	Sheets	84 mm × 148 mm × 3 mm	1

- Extra width included in all parts
- No spare pieces

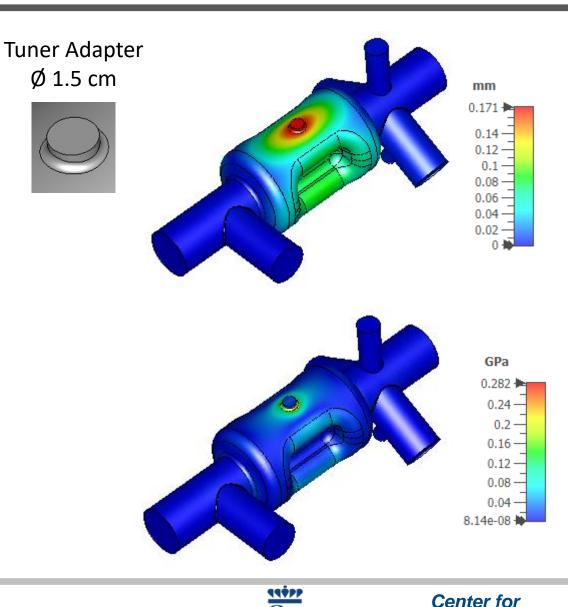
Next Steps

- Full engineering analysis and design
- Develop detailed fabrication plan including
 - Forming dies
 - Machining and welding fixtures
 - Cavity drawings package
- Cavity processing procedures and tools


Back Up Slides

Final Frequency Tuning

- Frequency tuning before the final weld of end cap assemblies to center body
- Trim tuning done by trimming center body symmetrically in a vertical stacked assembly
- Trimming sensitivity = -1.017 MHz/mm



ΔL/2

Tuning Sensitivity

- Nb material properties at cryo temperature for annealed MG
 - Young's modulus 114 GPa (1.65×10⁷ psi)
 - Allowable stress < 283 MPa (For MG)
- Cavity thickness 3 mm
- Cavity constrained at beam pipe ports and FPC
- Required tuning range 100-180 kHz
- Tuning force (Both push and pull) 175 N

Total	Tuning	Tuning
Displacement	Sensitivity	Range
0.34 mm	9.5 MHz/mm	±3.24 MHz

Accelerator Science

Main Cavity Components

• Center body and 2 end caps to be machined from ingot

 $L_{RT} = L_{CT} \times 1.001432$

• Include additional length and diameter to include tolerances

Part	RF Dimensions	RT Dimensions	Ingot Size	Notes
	Diameter = 99.4 mm	Diameter = 99.6 mm	Diameter = 125 mm	Including 3 mm sheet thickness + 10 mm for tuner adapter
	Length = 130.2 mm	Length = 130.4 mm	Length = 150 mm	Including extra length for trim tuning
	Diameter = 99.4 mm	Diameter = 105.6 mm	Diameter = 115 mm	Including 3 mm sheet thickness
	Length = 30.5 mm	Length = 30.6 mm	Length = 40 mm	

