
ilc

QMiR Crab Cavity for ILC

Andrei Lunin, Vyacheslav Yakovlev October 13, 2023

● KEK 大学共同利用機関法ノ

WP3 Crab Cavity Design Meeting #6

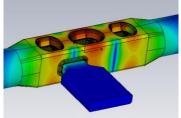
Requirements for QMiR 2.6 GHz Crab Cavity

1	Parameter		-TDR ication	10Hz Upgrade ^{1,2}	1 Te	eV CoM	Spec ²
2	Beam Energy (GeV) e-	125			500		
3	Crossing Angle (mrad)	14					
4	Installation site (m from IP)	14					
5	RF Repetition Rate (Hz)	5 10		10	4		
6	Number of bunches	1312		2625	2450		
7	Bunch Train Length (ms)	727		961	897		
8	Bunch Spacing (ns)	554			366		
9	Beam current (mA)	5.8		8.75	7.6		
10	Operating Temp (K)	2					
11	Cryomodule installation length (m)	3.8 (incorporating gate valves)					
12	Horizontal beam-pipe separation (m)	0.1967 (centre) ±0.0266 (each end of installation length)					
13							
14	Cavity Frequency (GHz)	3.9	2.6	1.3	3.9	2.6	1.3
15	Total Kick Voltage (MV)	0.615	0.923	1.845	2.5	3.7	7.4
16	Max Ep (MV/m)	45					
17	Max Bp (mT)	80					
18	Amplitude regulation/cavity (% rms)	3.5 (for 2% luminosity drop)					
19	Relative RF Phase Jitter (deg rms)	0.069					
20	Timing Jitter (fs rms)	49 (for 2% luminosity drop)					
21	Max Detuning (kHz)	240	170	100 - 180	240	170	100 - 180
23	Longitudinal impedance threshold (Ohm)	Cavity wakefield dependent					
24	Trasverse impedance threshold (MOhm/m) (X,Y)	48.8, 61.7					
26	Cavity field rotation tolerance/cavity (mrad rms)	5.2 (for 2% luminosity drop)					
27	Beam tilt tolerance (H and V) (mrad rms and urad rms)	0.35, 7.4 (for 2% luminosity drop)					
28	Minimum CC beam-pipe aperture size (mm)	>25 (same as FD magnets)					
29	Minimum Exraction beam-pipe aperture size (mm)	20					
36	Beam size at CC location (X, Y,Z) (mm,um,um)	0.97, 66, 300					
37	Beta function at CC location (X, Y) (m,m)		23200, 15400				
41	Horizonal kick factor (kx) (V/pC/m)	<< 1.6 x 10 ³					
42	Vertical kick factor (ky) (V/pC/m)	<< 1.2 x 10 ²					
43	CC System operation	assume CW-mode operation					
-			1				

Freq	2600 MHz
V _{kick}	0.92 MV
(R/Q) _t	225 Ω
G-factor	160
Bp, max	70 mT
Ep, max	35 MV/m
W _{STORED}	0.24 J
Length	500 mm

V V

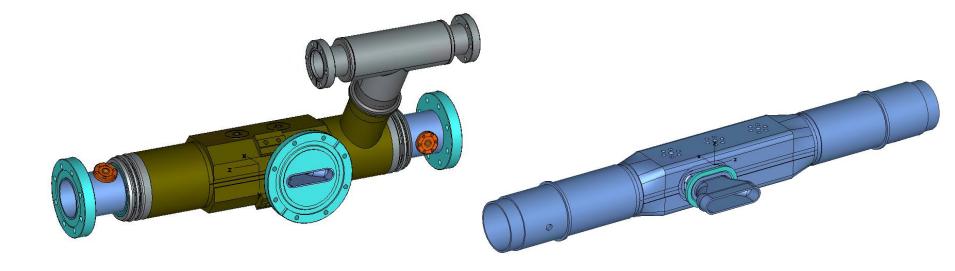
V


٧

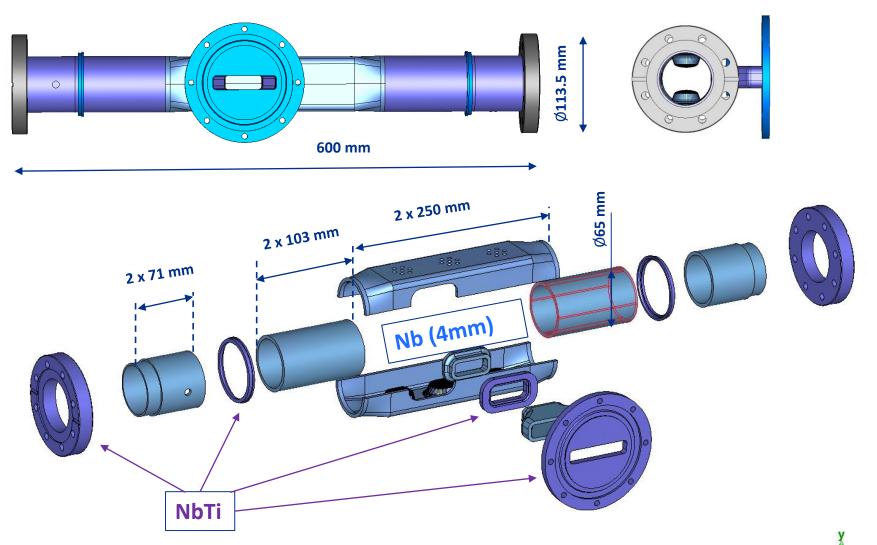
√ √

٧

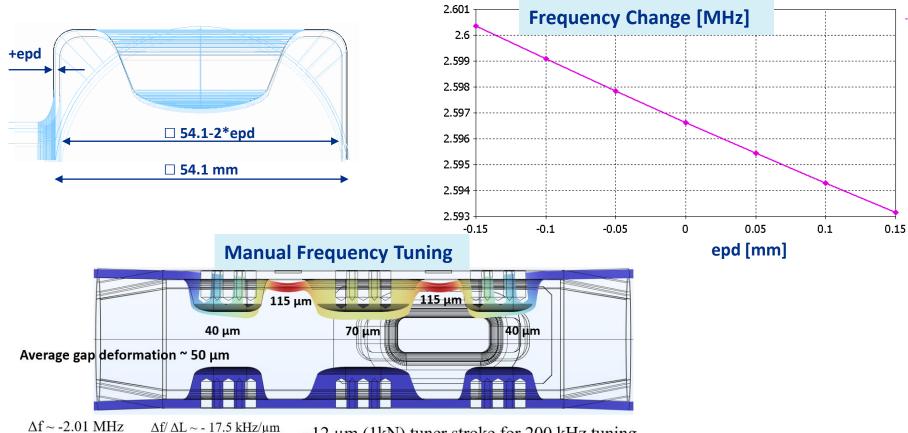
√ √



2


Finalized Mechanical Design of QMiR (Y. Orlov)

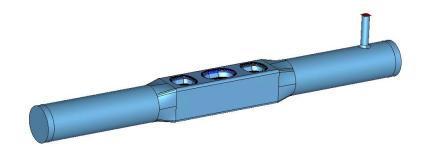
- The cavity body divided into several shorter parts
- Nb thickness is 4 mm (reduced to 3 mm for welds)
- NbTi Transition Rings for welding the LHe-vessel
- NbTi End Flanges with Al diamond seal


QMiR Parts

• All parts are milled from solid Nb ingots

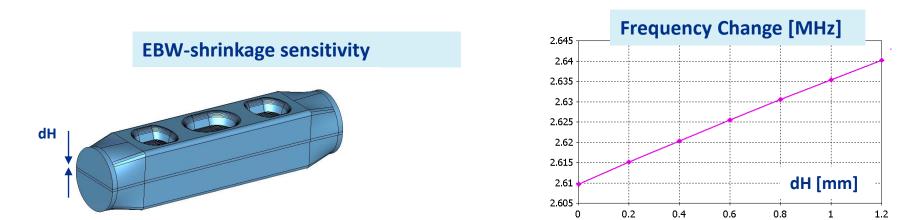
Cavity EP-cleaning and Final Frequency Tuning

 $\Delta f \sim -2.01 \text{ MHz}$ $\Delta f / \Delta L \sim -17.5 \text{ kHz/} \mu m$ vs. 10 kN force $\Delta \sigma / \Delta F$ orce $\sim 22 \text{ MPa/kN}$ $\sim 12 \mu m$ (1kN) tuner stroke for 200 kHz tuning


- Nominal frequency @RT before cooldown, F0_RT
- Expected frequency sensitivity of EP, df/d(epd)
- For maximum Nb removal of +150 μm, df
- Desirable cavity frequency before EP:

≈ 2.6/1.00143 = 2596.3 MHz

- ≈ -24 MHz/mm
- ≈ 3.6 MHz
- ≈ 2599 (+1) MHz



Central Part Frequency Tuning

Frequency w/o WG

F0_RT_WG = 2596.3 MHz F0_RT_NOWG = 2600.1 MHz

• Expected frequency sensitivity due to EBW shrinkage:

≈ -26.6 MHz/mm ≈ -3.8 MHz

🛟 Fermilab

- Expected frequency shift due to WG-coupling:
- Misalignment of cylindrical parts (Ø56) (< ±0.2 mm) leveled by the EBW seam.

A. Lunin | QMIR Crab Cavity for ILC

10/13/23

Summary of Cavity Tuning

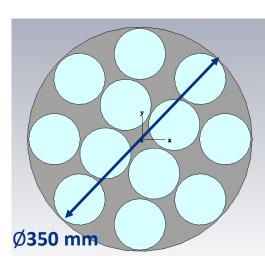
Production step	Target Frequency, MHz	Remarks
1. Machined Central Part (CP)	2625.4	dH = +1 mm
2. Before CP EBW	2618.8	dH = +0.5 mm
3. Welded CP	2612.0	dH = 0 ±0.1 mm
4. Welded CP + BP	2602.9	1 st freq. tune
5. Full cavity (CP+BP+WG)	2599.1	Final bead pull and freq. tune control
6. Full cavity after EP (@RT)	2596.4	EP ≈ < -100 μm
7. Cavity @2K	2600.1	dF_err = < (+1) MHz

• Final cavity frequency @2K after cooldown is preferable to have a positive frequency error, less than the tuner range of ~ 1 MHz

‡Fermilab

• Frequency check is required after each step

Nb Material Procurement

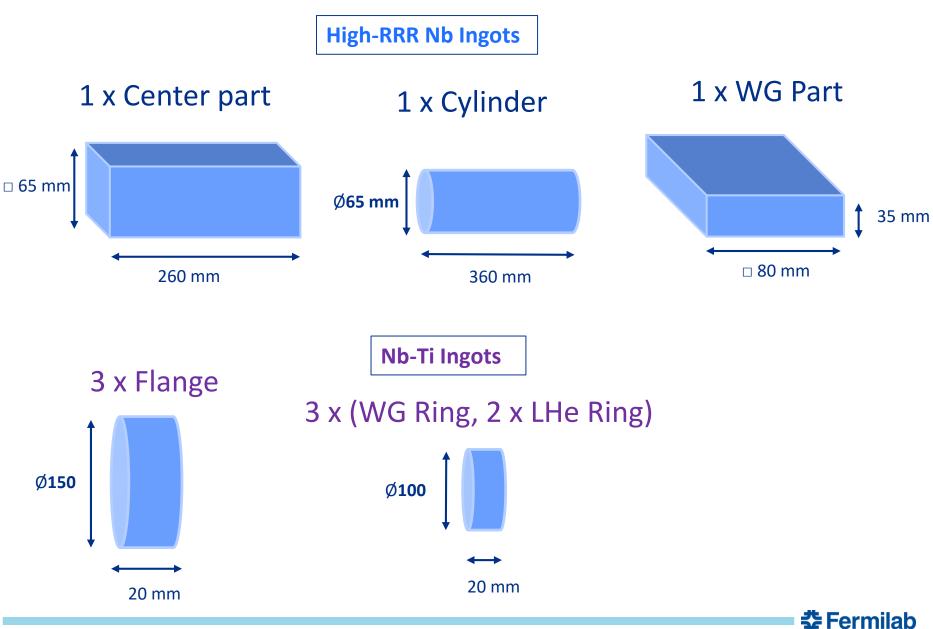


Companhia Brasileira de Metalurgia e Mineração

Córrego da Mata S/N - Araxá - MG 38.183-970 - Brazil Tel: +55 (34) 3669-3000- Fax: +55 (34) 3669-3300

Analysis Report

Date: Product: Packaging: Lot Quantity (kg): Labware Number: Ingot: Nominal Diameter(mm): Surface Condition: Length (mm): 12 May 2023 NIOBIUM METAL WOODEN BOX REINFORCED 2000KG 311 2040482 4162-6/12 350 Machined 405



- ✓ Purchase Order placed on 09/21/23
- CBMM is working on the logistics now
- Estimated delivery time is 4-6 weeks
- Next: Preparation for cutting samples (wired EDM)
- Next: RRR test and EB-welding test

QMiR Raw Materials Needed

9 10/13/23 A. Lunin | QMIR Crab Cavity for ILC

Progress in Production of QMiR/CC Prototype

Cavity Mechanical Design

- ✓ Validation of mechanical concepts completed
- ✓ Final mechanical drawings are ready
- Some parts may still require minor changes for better welding
- Series of meetings with ANL (paused until P5 report)
 - cavity fabrication plan, QA inspections, chemistry, etc.

Production and prototyping

- Procurement of Nb material is completed
- ✓ Cavity frequency tuning plan is ready
- Close cooperation with ANL on the next steps:
 - Niobium QA (RRR, inclusions, ...)
 - Develop EDM wire cut drawings for niobium
 - Develop a machining and EB welding fabrication plan

□ Fermilab is open for collaboration

- loss/kick factor simulations with GdfidL
- multipactor analysis
- HOM analysis

