Charm background to strange quark production in e^+e^- collisions

Yevhenii Padniuk

November 8, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction

Why $c\bar{c}$ is the background of $s\bar{s}$:

- Both have same final state
- They have similar cross section

Initial kaons should go through several cut stages:

- Left handed samples
- $p_{mag} > 15 \ GeV$
- $\frac{dE}{dx}$ for reconstructed K closed to corresponding value from Bethe–Bloch formula
- Leading kaons are chosen(K⁻ and K⁺ with the highest momentum)
- The magnitude of the leading K momentum bigger than for leading π(i.e. this event is not associated to uū or dd̄)
- reconstructed K^+ and corresponding K^- have opposite charge signs

Cut stages

	p _{mag}	$\frac{dE}{dx} \cap is_s$	$q_{K^-} imes q_{K^+} < 0$	Only primary	Secondary	Garbage
сē	6058908	1865436	1121648	399009	581843	120333
sīs	5302002	1838752	1314164	1292601	1768	18107
				4 日 > 4 日 >	> < 注) < 注)	E のの

3/16

Events with secondary vertices

	сē	sīs
Events	581843	1768
Percentage	99.7%	0.3%

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < で 4/16

Events without secondary vertices

	сē	sīs
Events	399009	1292601
Percentage	23.6%	76.4%

The LCFIVertex package - https://doi.org/10.1016/j.nima.2009.08.059

Total c-tag distribution(Different scale!)

c-tag distribution for events with secondary vertices(Different scale!)

Total c-tag for events without secondary vertices

4 ロ ト 4 日 ト 4 王 ト 王 シ へ C 6/16

c-tag< 0.6 does not have impact on the $s\bar{s}$ statistics, but it significantly decreases background statistics

Optimal c-tag cut

When c-tag value decreases purity grows, but in the same time statistics for $s\bar{s}$ is lost, which is an intuitively expected result.

$|z_0| \times sin(\theta)$

There is no significant difference between $c\bar{c}$ and $s\bar{s}$

c-tag and d_0 cuts

Approximately all $s\bar{s}$ events has $d_0 < 10 \mu m$ unlike of $c\bar{c}$

c-tag and d_0 cuts

	Events	Percentage	Events	Percentage	
	c-tag< 0.6	c-tag< 0.6	c-tag $< 0.6 ~\cap~ d_0 < 10 \mu m$	c-tag < 0.6 \cap $d_0 < 10 \mu m$	
	110331	8.1%	98399	7.4%	
sīs	1255305	91.9%	1240213	92.6%	

Cross-section plot

Initial cross section

Cross-section plot

Cross section after vertex separation

Cross-section plot

Cross section after vertex separation and c-tag< 0.6 with $d_0 < 10 \mu m$ cuts

• Secondary vertex is a feature of $c\bar{c}$ events

<ロト < 畳 ト < 差 ト < 差 ト 差 の Q C 12/16

- Secondary vertex is a feature of $c\bar{c}$ events
- Quantities such as d_0 , z_0 itself are not useful for this background analysis

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q で 12/16

- Secondary vertex is a feature of $c\bar{c}$ events
- Quantities such as *d*₀, *z*₀ itself are not useful for this background analysis
- c-tag< 0.6 is the optimal value which does not have an impact on ss statistics, but can significantly improve the purity

<ロト < 目 > < 目 > < 目 > < 目 > 目 の へ で 12/16

- Secondary vertex is a feature of $c\bar{c}$ events
- Quantities such as *d*₀, *z*₀ itself are not useful for this background analysis
- c-tag< 0.6 is the optimal value which does not have an impact on ss statistics, but can significantly improve the purity

<ロト < 目 > < 目 > < 目 > < 目 > 目 の へ で 12/16

• $|z_0| imes sin(heta)$ is not useful for this background analysis

- Secondary vertex is a feature of cc
 events
- Quantities such as d₀, z₀ itself are not useful for this background analysis
- c-tag< 0.6 is the optimal value which does not have an impact on ss statistics, but can significantly improve the purity
- $|z_0| imes sin(heta)$ is not useful for this background analysis
- d_0 can be used for background reduction in combination with c-tag cut, the optimal value of it is $d_0 < 10 \mu m$

Backup slides

<ロト < 戸 > < 王 > < 王 > 王 のへで 13/16

New c-tag cut searching

New c-tag and d_0 cuts

Events	Percentage	Events	Percentage
c-tag< 0.15	c-tag< 0.15	c-tag< 0.15 \cap $d_0 < 10 \mu m$	c-tag< 0.15 \cap $d_0 < 10 \mu m$
6674	1.6%	7635	1.4%
476777	98.4%	476771	98.6%

Cross section comparison

Cross section after vertex separation and c-tag< 0.6 with $d_0 < 10 \mu m$ cuts

Cross section comparison

Cross section after vertex separation and c-tag <0.15 with $d_0<10\mu m$ cuts