

Detector Requirements and Concepts for FCC-ee

Martin Aleksa

- FCC-ee Introduction
- Physics Requirements
- Proto Detectors

Based on:

- First Annual US FCC Workshop at BNL (<u>https://www.bnl.gov/usfccworkshop/</u>)
- FCC Week in London (<u>https://indico.cern.ch/event/1202105/</u>)
- Noble-Liquid Calorimeter Group Meetings (<u>https://indico.cern.ch/category/8922/</u>)

January 15, 2024

Introduction & Detector Requirements

January 15, 2024

e⁺e⁻ Collider Options

Numbers of events in 15 years, tuned to maximise the physics outcome

The Challenge – High Precision Measurements

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
$m_Z (keV)$	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z} \ ({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(imes 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({ m m}_{ m Z}^2)(imes 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	1196 ± 30	0.1	0.4 - 1.6	from R^{Z}_{ℓ} above
$\sigma_{\rm had}^0$ (×10 ³) (nb)	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_b (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
				stat. extrapol. from SLD
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	τ polarization asymmetry
				τ decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
$\tau \text{ mass (MeV)}$	1776.86 ± 0.12	0.004	0.04	momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW threshold scan
				Beam energy calibration
$\Gamma_{\rm W} ~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
				Beam energy calibration
$\alpha_{\rm s}({\rm m}_{\rm W}^2)(\times 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W}
$N_{\nu}(imes 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
$m_{top} (MeV/c^2)$	172740 ± 500	17	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\Gamma_{\rm top}~({\rm MeV/c}^2)$	1410 ± 190	45	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From $t\bar{t}$ threshold scan
				QCD errors dominate
ttZ couplings	$\pm 30\%$	0.5 - 1.5 %	small	From $\sqrt{s} = 365 \text{GeV} \text{run}$

- FCC-ee EWPO measurements with unprecedented statistical precision
 - e.g. 6 x 10¹² hadronic Z decays at Z-pole
 - Statistical precision for EWPOs measured at the Z-pole is typically 500 times smaller than the current uncertainties
- → Systematic uncertainty dominant!
- \rightarrow Can achieve indirect sensitivity to new physics up to a scale $\Lambda_{\text{new physics}}$ of 70 TeV
- We therefore require:
 - Better control of parametric uncertainties, e.g. PDFs, α_s , m_t , m_H
 - Higher order theoretical computations, e.g. N...NLO
 - Access to phase-space limited regions + understand correlations among bins in distributions
 - Minimizing detector systematics

January 15, 2024

Experimental Challenges

• 30 mrad beam crossing angle

- Detector B-field limited to 2 Tesla at Z-peak operation
- Tightly packed MDI (Machine Detector Interface)
- "Continuous" beams (no bunch trains); bunch spacing down to ≤ 20 ns
 - Power management and cooling (no power pulsing as possible for linear coll.)
- Extremely high luminosities
 - High statistical precision control of systematics down to 10⁻⁶ level
 - Online and offline handling of $O(10^{13})$ events for precision physics: "Big Data"
- Physics events at up to 100 kHz
 - Detector response $\lesssim 1 \,\mu s$ to minimise dead-time and event overlaps
 - Strong requirements on sub-detector front-end electronics and DAQ systems
 - At the same time, keep low material budget: minimise mass of electronics, cables, cooling, ...
- More physics challenges
 - Absolute luminosity measurement to 10^{-4} luminometer acceptance to $\mathcal{O}(1 \ \mu m)$ level
 - Detector acceptance to ~10⁻⁵ acceptance definition to few micro-radians, hermeticity (no cracks!)
 - − Precise momentum measurement through quasi-continuous resonant depolarisation (RDP) measurements \rightarrow e.g. 50 keV at the Z pole
 - Stability of momentum measurement stability of magnetic field wrt E_{cm} (10⁻⁶)

Central part of detector volume – top view

January 15, 2024

FCC-ee Physics Programme

Courtesy M. Dam

FCC-ee Detector Requirements

January 15, 2024

Higgs Factory: Higgs Production and Decay

January 15, 2024

Vertex Detector and Tracking

January 15, 2024

Particle Identification

Calorimetry – Jet Energy Resolution

Energy coverage < 300 GeV : $22 X_0, 7\lambda$ Precise jet angular resolution

Jet energy: $\sigma(E_{jet})/E_{jet} \simeq 30\% / VE \text{ [GeV]}$?

 \Rightarrow Mass reconstruction from jet pairs

Resolution important for control of (combinatorial) backgrounds in multi-jet final states

- Separation of HZ and WW fusion contribution to vvH
- HZ \rightarrow 4 jets, tt events (6 jets), etc.

January 15, 2024

• At $\sigma E/E \simeq 30\%$ / VE [GeV], detector resolution is comparable to natural widths of W and Z bosons

How to achieve jet energy resolutions of ~3-4% at 50GeV:

- Highly granular calorimeters
- Particle Flow reconstruction and possibly in addition techniques to correct non-compensation (e/h≠1), e.g. dual read-out

→ High granularity and/or dual read-out

Calorimetry

Detector technology (ECAL & HCAL)	E.m. energy res. stochastic term	E.m. energy res. constant term	ECAL & HCAL had. energy resolution (stoch. term for single had.)	ECAL & HCAL had. energy resolution (for 50 GeV jets)	Ultimate hadronic energy res. incl. PFlow (for 50 GeV jets)
Highly granular Si/W based ECAL & Scintillator based HCAL	15-17%[12,20]	1% [12,20]	45-50~%~[45,20]	pprox 6~% ?	4 % [20]
Highly granular Noble liquid based ECAL & Scintillator based HCAL	8-10%[24,27,46]	$< 1 \% \ [24, 27, 47]$	$pprox 40 \% \ [27,28]$	pprox 6~% ?	3-4% ?
Dual-readout Fibre calorimeter	11%[48]	< 1 % [48]	pprox 30 % [48]	4-5%[49]	3-4%?
Hybrid crystal and Dual-readout calorimeter	3 % [30]	< 1 % [30]	pprox 26% [30]	5-6%[30,50]	3-4%[50]

Table 1. Summary table of the expected energy resolution for the different technologies. The values are measurements whereavailable, otherwise obtained from simulation. Those values marked with "?" are estimates since neither measurement norsimulation exists.For references and more information see https://link.springer.com/article/10.1140/epip/s13360-021-02034-2

- Excellent Jet resolution: ≈ 30%/VE
- **ECAL resolution:** Higgs physics $\approx 15\%/VE$; but for heavy flavour programme better resolution beneficial $\rightarrow 8\%/VE \rightarrow 3\%/VE$
- Fine segmentation for PF algorithm and powerful γ/π^0 separation and measurement
- Other concerns: Operational stability, cost, ...
- **Optimisation ongoing for all technologies:** Choice of materials, segmentation, read-out, ...

January 15, 2024

Proto Detectors

January 15, 2024

FCC-ee Proto Detectors – Overview

IDEA

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker;
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (**0**(10 ps) timing and/or RICH)?

Ε

11

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system

- Very active community
 - Prototype designs, test beam campaigns, ...

ALLEGRO (Noble Liquid ECAL based)

- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

January 15, 2024

CLD Detector Concept

General purpose detector for Particle Flow reconstruction (based on the work for a detector at CLIC)

ILD Workshop 2024, CERN — M. Aleksa (CERN)

https://arxiv.org/abs/1911.12230

CLD Vertex Detector and Si Tracker

Silicon vertex detector: precise vertex reconstruction

January 15, 2024

CLD Calorimetry

r=3.3m

r=2.2m

Jet resolution:

~4% at 50GeV

- ECal (Si/W)
 - 40 layers, 1.9 mm tungsten absorber, 22 X_o
 - 0.5 mm thick silicon sensors with $5 \times 5 \text{ mm}^2$ granularity $\frac{\sigma}{E} \approx \frac{16\%}{\sqrt{E}}$
 - ECal optimisation studies
- HCal (Scintillator/Steel)
 - 44 layers, 19 mm steel absorber, 5.5 (+1) λ
 - 3 mm thick scintillator tiles with 3 \times 3 cm² granularity

IDEA Detector Concept

→ See talks in the Tuesday morning parallel session

IDEA concept (proposed in FCC CDR) Innovative DEtector for e⁺e⁻ Accelerator

New, innovative concept

- Silicon vertex detector
 - 5MAPS layers, R=1.7-34cm
- Short-drift, ultra-light wire chamber
 - 112 layers, L=4m, R=35-200cm
- Silicon wrapper
- Thin and light solenoid coil inside calorimeter system (see back-up)
 - Coil: 2T, R=2.1-2.4m
 - 0.76X₀, 0.16 λ_{int}
- Dual-readout calorimeter
 - $\quad 2m \text{ depth, } 7\lambda_{int}$
 - Particle flow reconstruction
 - Option: crystal calorimeter in front for better EM resolution
- Muon system made of 3 layers of µ-RWELL detectors in the return yoke (see back-up)

https://pos.sissa.it/390/877/pdf

January 15, 2024

Vertex Detector & Momentum Measurement

Tracker: Z or H decay muons in ZH events have rather low p_T

- \rightarrow Transparency more important than asymptotic resol. \rightarrow minimize material!
- \rightarrow Very light vertex detector and drift chamber (see next slide and back-up)

Vertex Detector: Inspired by Belle II based on MAPS technology, using the ARCADIA R&D program

- 5MAPS layers, pixels 20 \times 20 μm^2
- Light
 - Inner layers: 0.3% X₀/layer
 - Outer layers: 1% X₀/layer
- Performance:
 - Point resolution of ~3 mm
 - Efficiency of ~100%
 - Extremely low fake rate hit rate

Courtesy of Magnus Mager, CERN

Drift Chamber

Dual Readout Calorimetry

$\begin{array}{c|c} 0.4 & 1.5 & 1.0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \end{array}$

Alternate

- Scintillation fibres
- Cherenkov fibres

Newer DR calorimeter (bucatini calorimeter)

• Measure simultaneously:

- Scintillation signal (S)
- Cherenkov signal (C)
- Calibrate both signals with e⁻
- Unfold event by event f_{em} to obtain corrected energy

$$S = E[f_{em} + (h/e)_{S}(1 - f_{em})]$$

$$C = E[f_{em} + (h/e)_{C}(1 - f_{em})]$$

$$E = \frac{S - \chi C}{1 - \chi} \quad \text{with:} \quad \chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{C}}$$

Full GEANT4 simulation:

hadronic: $\frac{\sigma}{E} = \frac{31\%}{\sqrt{E}} + 0.4\%$

electromagnetic: $\frac{\sigma}{E} = \frac{13.0\%}{\sqrt{E}} + 0.2\%$ Crystal option: 20cm PbWO₄ $\frac{\sigma}{E} \approx \frac{3\%}{\sqrt{E}}$

January 15, 2024

ALLEGRO Detector Concept

ALLEGRO

- A Lepton coLlider Experiment with Granular Read-Out Vertex Detector:
 - MAPS or DMAPS possibly with timing layer (LGAD)
 - Possibly ALICE 3 like or similar to Belle II VTX upgrade

Drift Chamber (±2.5m active) similar to IDEA

Silicon Wrapper + ToF:

 MAPS or DMAPS possibly with timing layer (LGAD), Monolithic CMOS

High Granularity ECAL:

- Noble liquid + Pb or W
- Particle Flow reconstruction

Solenoid B=2T, sharing cryostat with ECAL, between ECAL and HCAL

- Light solenoid coil $\approx 0.76 X_0$ (see back-up)
- Low-material cryostat < 0.1 X_0 (see back-up)

High Granularity HCAL / Iron Yoke:

- Scintillator + Iron (particle flow reconstruction)
 - SiPMs directly on Scintillator or
 - TileCal: WS fibres, SiPMs outside

Muon Tagger:

Drift chambers, RPC, MicroMegas See <u>talk</u> at <u>FCC Week 2022</u> in Paris

22

FCC Calorimetry

CLIC Detector

FCC-hh Calorimetry studies have been published at https://arxiv.org/abs/1912.09962

January 15, 2024

High Granularity Noble-Liquid Calorimeter

Baseline design

- 1536 straight inclined (50.4°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
 - \rightarrow High granularity (very flexible need to find optimum)
 - Ground shields to reduce cross-talk \rightarrow increase detector capacitance 25 – 300pF per cell (impact on noise)
- 1.2 2.4mm LAr gaps
- 40cm deep ($\approx 22 X_0$)
- Segmentation:
 - $\Delta \theta$ = 10 (2.5) mrad for regular (1st comp. strip) cells,
 - $\Delta \phi = 8 \text{ mrad}$
 - \rightarrow cell size in strips: 5.4mm x 17.8mm x 30mm
- 11 longitudinal compartments
- Implemented in FCC-SW Fullsim **Possible Options**
- LKr or LAr, W or Pb absorbers,
- Absorbers with growing thickn.
- Granularity optimization
- Al or carbon fibre cryostat
- Warm or cold electronics

ILD Workshop 2024, CERN — M. Aleksa (CERN)

HV

Challenges: Resolution, Noise and Crosstalk

- **EM resolution** with sampling term of 8 to 9%
- Noise vs cross-talk challenge: traces need to be shielded to minimize cross-talk → grounded shields increase detector capacitance and hence noise → need to find best compromise – prototype electrode produced & measured
 - Noise of < 1.5 MeV per cell for warm electronics and transmission lines of R₀ = 100 Ω and τ = 200 ns (C_d ≤ 250 pF)
 - → MIP S/N > 5 reached for all layers
 - **Cross-talk** of < 1% for shaping times $\tau \ge 20$ ns
- Next steps: Further optimization, then ≈64 absorber test module for testbeam measurements

Simulated cross-talk 2 shields < 1% for $\tau \ge 20$ ns confirmed by measurements on prototype

400mm

566mm

1094mm

Cross-talk (%)	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Shaping time (ns) \downarrow						
No shaper	0.54	0.85	0.85	2.31	2.62	9.11
20	0.03	0.04	0.01	0.09	0.11	0.75
50	0.01	0.02	0.0	0.04	0.05	0.37
100	0.01	0.01	0.0	0.02	0.03	0.23
150	0.0	0.01	0.0	0.02	0.02	0.18
200	0.0	0.01	0.0	0.01	0.02	0.15
300	0.0	0.0	0.0	0.01	0.01	0.13

January 15, 2024

HCAL for Noble-Liquid Based Concept

- ATLAS TileCal inspired HCAL has been implemented into FullSim, other Sci/Steel options (CALICE like) will also be studied
- FCC-ee TileCal:
 - 5mm steel absorber plates alternating with 3mm Scint.: 8 9.5 λ
 - 128 modules in ϕ , 2 tile/module
 - 13 radial layers
 - Δη = 0.025 (grouping 3-4 tiles), Δφ = 0.025
 - In the FCC-hh design there used to be Pb plates to improve the e/h ratio. Since the HCAL acts as return yoke, these Pb plates have been removed for FCC-ee.
 - FCC-ee TileCal geometry is available in SW FCCDetectors
 - Work on optimisation of segmentation and reconstruction is in full swing
 - Started testing Sci tile + WLS fibre + SiPM readout
 - − ECAL + HCAL performance: Sampling term of ~37% for π^{\pm} → excellent starting point for particle flow reconstruction! → further improvement expected

TileCal

Thin Cryostats R&D at CERN

Thin cryostats (carbon fibre or honeycomb) under study, see presentation by M. Soledad

January 15, 2024

Conclusions

- FCC-ee has an enormous physics potential
 - Unprecedented factory for Z, W and Higgs bosons; for top, beauty, and charm quarks; and for tau leptons
 - Possibly also factory for BSM particles!!
- Instrumentation to fully exploit the physics potential is challenging and exciting
 - FCC-ee can host (up to) four experimental collaborations
 - Full exploitation of physics potential via N "general purpose" experiments, possibly complemented by M dedicated experiments (e.g. heavy flavour) → N+M ≤ 4
- For next ESPP, need to propose detector concepts that meet the experimental challenge
- Detector Concepts working group formed last year (e-group: FCC-PED-DetectorConcepts), monthly meetings: <u>https://indico.cern.ch/category/15054/</u>
- Detector R&D for FCC-ee is a rich field totally orthogonal to challenges at HL-LHC
- Strong European effort (ECFA) on setting up Detector R&D Collaborations
- Many interesting questions and research topics ahead of us ideal time to join in!
- The roadmap ahead of us: approval of the project in 2028, and the proposal of four detectors in ~2032!!

FRANCI

Thank You for Your Attention!

FCC

Genève

LHC_

ILD Workshop 2024, CERN — M. Aleksa (CERN)

T N

BACK-UP

January 15, 2024

Introduction – pp versus e⁺e⁻

pp: look for striking signal in large background

- High rates of QCD backgrounds
 - \rightarrow Complex triggering schemes
 - \rightarrow High levels of radiation
- High cross-sections for coloured-states
- High-energy circular pp colliders feasible
- Large mass reach → exploration
- S/B $\approx 10^{-10}$ without trigger, S/B ≈ 0.1 with trigger

ILD Workshop 2024, CERN — M. Aleksa (CERN)

e*e-: detect everything; measure precisely

- Clean experimental environment
 - → Trigger-less readout
 - → Low radiation levels
- Superior sensitivity for electro-weak states
- Limited direct mass reach
- S/B \approx 1 \rightarrow measurement

Ultra-Thin Solenoid Magnet R&D at CERN

Thin solenoid magnet (studied for R=2.2m as developed for IDEA)

For ALLEGRO: Solenoid outside ECAL \rightarrow R=2.8m (being studied, but results below for R=2.2m)

- Support cylinder with thickness of 12 mm
- Support cylinder material: aluminium 5083

Transparency of the cold mass: 0.76 X₀ Energy density: ~14 kJ/kg [2]

First mechanical analysis is promising

	Conductor	Support	
Parameter	Value	Value	Unit
Naterial	Ni-doped aluminium	Aluminium 5083	
ield strength	147 (with NbTi) [3]	209 @ 4.2 K [4]	MPa
⁄oung's modulus	75 x 10 ³	81 x 10³	MPa

- Peak von Mises stress:
 105 MPa
- Peak tensile strain: 0.13 %
- Peak shear stress: 0.5 MPa
- Buckling of coil with simple (pessimistic) support, max. deformation: 0.7 mm
 See presentation by N. Deelen on this WS!

FCC Organisation & Detector R&D

January 15, 2024

The International FCC Organization

ECFA Detector Roadmap Implementation

- Development of a matrix, where for each Task Force the identified future science programmes that they will need to address in terms of the main ٠ technology challenges to be met and estimate the lead-time over which the required detector R&D programmes may be expected to extend.
- Create a time-ordered R&D requirements roadmap in terms of key capabilities not currently achievable.

January 15, 2024

ILD Workshop 2024, CERN — M. Aleksa (CERN)

•

DRD6 Proposal

- Detector R&D (DRD) collaborations being set-up to implement the ECFA Detector R&D Roadmap
- DRD6 on Calorimetry with 4 work packages and several transversal activities (TB, Materials, SW, ...)
 - Noble Liquid Calorimeter R&D part of work package 2 (18 institutes from 7 countries)
 - TileCal R&D part of work package 3 (7 institutes from 6 countries)
 - CALICE-like AHCAL part of work package 1 (10 institutes from 4 countries)
- DRD Proposal has been submitted, implementation beg. of 2024 (<u>link</u>)
- Noble Liquid Calorimeter R&D (WP2) joined by 18 institutes from 7 countries:
 - O(10-15) FTE expected during the next
 5 years

Work Package 2 (noble-liquid calorimetry) with 4 objectives:

- Performance studies and optimization, optimization of granularity for particle flow, particle ID and displaced vertices
- Optimisation of read-out electrodes further prototypes and then production of electrodes for test module
- Read-out electronics: warm electronics versus cold electronics
- Mechanical study of noble-liquid calorimeter in an experiment and design of a module for a testbeam to be built in 2027/2028.

January 15, 2024

e⁺e⁻ vs. pp Collisions – Cross Section Comparison

January 15, 2024

Granularity – What are the Limits in ATLAS LAr?

- In the ATLAS LAr calorimeter electrodes have 3 layers that are glued together (~275µm thick)
 - 2 HV layers on the outside
 - 1 signal layer in the middle
- → All cells have to be connected with fine signal traces (2-3mm) to the edges of the electrodes
 - Front layer read at inner radius
 - Middle and back layer read at outer radius
- → limits lateral and longitudinal granularity
- \rightarrow maximum 3 long. layers

January 15, 2024

 \rightarrow O(200k) read-out cells – particle flow reconstruction possible, but not optimal

Noble-Liquid Calo: How to Achieve High Granularity?

One 'theta tower'

Realize electrodes as multi-layer PCBs (*H*=1.2mm thick), 5 to 7 layers

- HV and read-out
- Signal traces (width w_t) in dedicated signal layer connected with vias to the signal pads
- Traces shielded by ground-shields (width w_s , dist. h_s) forming $50\Omega - 80\Omega$ transmission lines
 - Optimizing between 0, 1 or 2 shield layers
- \rightarrow capacitance between shields and signal pads C_s will add to the detector capacitance via the gap C_d

In principle any granularity realisable \rightarrow cost in cross-talk and noise \rightarrow careful optimization!

January 15, 2024

ILD Workshop 2024, CERN — M. Aleksa (CERN)

Total capacitance (no trace)

Layer 3

···· Laver 4

Longitudinal layers

- Laver 1 Laver 2

350

High Granularity Noble-Liquid Calorimeter

Baseline design

- 1536 straight inclined (50.4°) 1.8mm Pb absorber plates
- R_i=216cm, R_o=256cm (small adjustments possible/probable)
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps .
- 40cm deep ($\approx 22 X_0$)
- Segmentation:
 - $\Delta \theta$ = 10 (2.5) mrad for regular (1st comp. strip) cells,
 - $\Delta \phi = 8 \text{ mrad}$
 - \rightarrow cell size in strips: 5.4mm x 17.8mm x 30mm
- 11 longitudinal compartments
- Implemented in FCC-SW Fullsim
- Exact radius and lateral and longitudinal segmentation subject to further optimization!

Possible Options

- LKr or LAr, W or Pb absorbers,
- Absorbers with growing thickness
- Granularity optimization
- Al or carbon fibre cryostat
- Warm or cold electronics

January 15, 2024

Challenges: Resolution, Noise and Crosstalk

- Goal: EM resolution with sampling term of 8-10% or better of 8-10%
 - Further optimization under study
 - Increasing sampling fraction,
 - Different absorber geometries (increasing thickness with depth)
 - Other active material (LAr/LKr)
- Noise vs cross-talk challenge: traces need to be shielded to minimize cross-talk → grounded shields increase detector capacitance and hence noise → need to find best compromise – prototype electrode produced & measured

- → MIP S/N > 5 reached for all layers using warm electronics
- With cold electronics noise can be further improved substantially

ILD Workshop 2024, CERN — M. Aleksa (CERN)

15000

5000

Prototype Electrodes

- Small Scale Prototype Electrode (IJCLab)
 - Detailed measurements of cell properties and cross-talk effects
 - Frequency behaviour
 - Good overall agreement with simulations on large frequency range
- Larger Scale Prototype Electrode (CERN)
 - 1:1 scale θ chunk: 16 towers with different layouts
 - Electrical tests with function generator, scope and software shaper
 - Sub-percent cross-talk easily achievable with > 50 ns shaping
- New Prototypes Planned at IJCLab and CERN

January 15, 2024

Noble-Liquid Calorimeter – Mechanical Studies

- Started to model full barrel calorimeter
- Defining inner and outer rings to hold barrel calorimeter
- Defining **spacers** between absorbers and electrodes optimizing distance
- In order to verify assumed rigidity of absorbers building **feasibility prototype** and perform thermo-mechanical tests

Radial and circumferential

January 15, 2024

Noble-Liquid Calorimeter – Testbeam Module

- Mechanical design of testbeam module (64 absorbers) has started
- Finite element calculations including
 - Rings and G10 bars
 - Absorbers and electrodes as shell (2D) elements using layers
 - Distance pins
 - Six M5 beams join electrodes and absorbers in each side (innerouter)
- In parallel work on finding/adapting testbeam cryostat
- Plan to **produce testmodule** in the next four years

The cryostat available to make the test beam is the CRRP-00563.

January 15, 2024

FCC-ee: Center of Mass Energy and Luminosity Measurement

Need to know < Vs > precisely

- Key systematics for all mass measurements, and all EW observables.
- FCC-ee, Z peak and WW threshold: exquisite precision on < vs > (100 keV at the Z, 300 keV at WW) thanks to quasi-continuous resonant depolarisation (RDP) measurements
 - Exploits the relation between the number of spin precessions per turn of transversely polarised e+/- and their energy
 - Very powerful, unique to circular machines allows a meas. of M_z to 100 keV

• Luminosity Measurement: ambitious goals:

- Absolute luminosity measurement to $\lesssim 10^{-4}$
- Relative luminosity (energy-to-energy point) to $\lesssim 10^{-5}$
- Inter-channel normalisation (e.g. $\mu\mu$ /multi-hadronic) to $\leq 10^{-5}$
- Luminosity measurement using low-angle BhaBha scattering, large angle $e^+e^- \rightarrow \gamma\gamma$ and $Z \rightarrow II$
 - Requiring extremely high precision on acceptance boundaries
 - O(1 μ m) and O(50 μ rad)! \rightarrow Very challenging!!

Tracking for FCC-ee

Two solutions under study

- **CLD:** All silicon pixel (innermost) + strips
 - Inner: 3 (7) barrel (fwd) layers (1% X₀ each)
 - Outer: 3 (4) barrel (fwd) layers (1% X₀ each)
 - Separated by support tube (2.5% X₀)
- IDEA: Extremely transparent Drift Chamber
 - GAS: 90% He 10% iC₄H₁₀
 - Radius 0.35 2.00 m
 - Total thickness: 1.6% of X_0 at 90°
 - Tungsten wires dominant contribution
 - Full system includes Si VTX and Si "wrapper"
- What about a TPC?
 - Very high physics rate (70 kHz), field limited to 2T
 - Considered for CEPC, but having difficulties...

January 15, 2024

Drift Chamber

- Drift chamber (gaseous tracker) advantages
 - Extremely transparent: minimal multiple scattering and secondary interactions
 - Continuous tracking: reconstruction of far-detached vertices
 - K⁰_S, Λ, BSM long-lived particles (LLPs)
 - Particle separation via dE/dx or cluster counting (dN/dx)
 - dE/dx much exploited in LEP analyses

IDEA: Preshower and Muon Detector

Preshower Detector

- High resolution before the magnet to improve cluster reconstruction
- Efficiency > 98%
- Space Resolution < 100 mm
- Mass production
- Optimization of FEE channels/cost

Similar design for the Muon detector January 15, 2024

Similar design for the Muon detector

Muon Detector

- Identifies muons and detects LLPs
- Efficiency > 98%
- Space Resolution < 400 mm
- Mass production
- Optimization of FEE channels/cost

Detector technology:

 $\mu\text{-RWELL},\,50x50~\text{cm}^2$ 2D tiles to cover more than 4330 m^2

- Preshower:
 - pitch = 0.4 mm
 - FEE capacitance = 70 pF
 - 1.5 million channels
- Muon Detector:
 - pitch = 1.5 mm
 - FEE capacitance = 270 pF
 - 5 million channels

IDEA: µ-RWELL Technology

The μ -RWELL is composed of only two elements:

- μ-RWELL_PCB
- drift/cathode PCB defining the gas gap
- $\mu\text{-}RWELL_PCB$ = amplification-stage \oplus resistive stage \oplus readout PCB

 μ -RWELL operation:

- A charged particle ionises the gas between the two detector elements
- Primary electrons drift towards the μ-RWELL_PCB (anode) where they are multiplied, while ions drift to the cathode
- The signal is induced capacitively, through the DLC layer, to the readout PCB
- HV is applied between the Anode and Cathode PCB electrodes
- HV is also applied to the copper layer on the top of the kapton foil, providing the amplification field

(*) G. Bencivenni et al., "The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD", 2015_JINST_10_P02008)

January 15, 2024