CLD: A Detector Model for the FCC-ee

André Sailer

CERN-EP-SFT

ILD Meeting CERN January 16, 2024

Table of Contents

The CLD Detector Model(s)

Flavours

- CLD_02_v05
- CLD_o3_v01
- CLD_04_v05
- Performance
 FCCee Machine Detector Interface and Backgrounds
- Software

Section 1:

The CLD Detector Model(s)

The CLD Detector Model

General purpose detector for Particle Flow reconstruction [1]

- Steel–Scintillator HCal with 3 cm cell-size _____
- Silicon–Tungsten ECal with 5 mm cell-size ____
- Silicon Tracker, mostly 50 μm pitch strips
- Vertex Detector with 25 µm pixels

Silicon Tracker

- Support tube for extraction with beam-pipe assembly
- 3 short and 3 long barrel layers, 7 inner and 4 outer endcaps
- 200 μm Silicon thickness, 50 μm × 0.3 mm cell size, 7 μm × 90 μm single point resolution (except first inner tracker disk, 5 × 5 μm²)
- At least 8 hits for $\theta > 8.5^{\circ}$
- ► Material budget: 1.1 % 2.2 % X₀ per layer (including overlaps)
- Some studies for re-scaling were done [1]

Silicon Tracker

Inner and Outer Tracker

- Support tube for extraction with beam-pipe assembly
- 3 short and 3 long barrel layers, 7 inner and 4 outer endcaps
- 200 μm Silicon thickness, 50 μm × 0.3 mm cell size, 7 μm × 90 μm single point resolution (except first inner tracker disk, 5 × 5 μm²)
- At least 8 hits for $\theta > 8.5^{\circ}$
- ► Material budget: 1.1 % 2.2 % X₀ per layer (including overlaps)
- Some studies for re-scaling were done [1]

Silicon Tracker

Inner and Outer Tracker

- Support tube for extraction with beam-pipe assembly
- 3 short and 3 long barrel layers, 7 inner and 4 outer endcaps
- 200 μm Silicon thickness, 50 μm × 0.3 mm cell size, 7 μm × 90 μm single point resolution (except first inner tracker disk, 5 × 5 μm²)
- At least 8 hits for $\theta > 8.5^{\circ}$
- ► Material budget: 1.1 % 2.2 % X₀ per layer (including overlaps)
- Some studies for re-scaling were done [1]

Silicon Modules

- Silicon tracker made up of 15.1 × 15.1 mm² and 30.1 × 30.1 mm² pieces
- Integer number of pieces put together to create modules, modules repeated to form disks
- This limits the sensible places were to place modules to avoid gaps
- Re-structuring needs careful placements or changes in quantum numbers

(FCC

All versions of the CLD detector model now reside in **k4geo**, any others must not be used

- ► FCCee_o1_v05: original base, large beam pipe radius
- CLD_o2_v05: Latest baseline
- CLD_03_v01: Inclusion of ARC for PID, reduced tracker dimensions
- CLD_04_v05: Replace ECal barrel with LAr, increased HCal/Coil/Muon dimensions

(FCC

CLD_02_v05

- Modifications for the vertex detector to fit with the new design for the innermost beampipe, including liquid cooling of the beampipe
- Fixed wrong number and size of modules in the last ring of the last inner tracker endcap
- Fixed some small overlaps
- Removed HOM (Higher-Order-Mode) absorber, which is no longer needed for low impedance beampipe

New Beampipe Dimensions

- New beam pipe design. Figures from [2]
- Liquid cooling for central cylinder (right side).
- Round to conical shape (see next slide), include shielding.
- For CLD_02_v05, only using primitive volumes available in Geant4 and TGeo, no CAD created pieces
 - Conical chamber is conical, no circular to ellipse volume available

[mm]	Cyl R _{min}	Cyl R_{\max}	Cyl <i>L</i>	Cone R _{min}
v02	10	11.2	125	11
v05	10	11.7	90	12

O FOC

Beampipe Design [3]

Vertex Barrel Parameters

- Modified radius of first double layers and length of all ladders to fit with new beampipe dimensions
- Width and number of ladders the same.
- Slightly reduce number of hits in overlap with VTX endcaps
- Keep cylindrical support possibility

[mm]	R_1	R_2	R_3	L
v02	12.5	35	57	125
v05	13.0	35	57	109

Cut through the vertex detector around the interaction point

CLD_03_v01

- ARC PID Detector implementation by A. Tolosa-Delgado
- Reduced tracker sizes to fit RICH cells before the ECal
- Need to finalise the tracker sizes, understand performance

C FCC

CLD_04_v05

- ECal Barrel replaced by LAr
- \blacktriangleright HCal, Solenoid, Yoke moved outwards by $\approx\!\!40~\text{cm}$
- Testing PandoraPFA for LAr, making interfaces more generic

14/22

Performance Requirements and Studies

- Performance of CLD detector detailed in the note [1]
- Requirements for FCC detector [4]

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$\mathrm{BR}(H \to \mu^+ \mu^-)$	Паске	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \rightarrow b \bar{b}, \ c \bar{c}, \ g g$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q \bar{q}, \ V V$	${\rm BR}(H \to q \bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim$ 3 – 4%
$H\to\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%~{ m (GeV)}$

Tracking

Momentum resolution

- Impact parameter resolution
 - Also estimated for larger material budget in the vertex detector
- Single particle efficiency w.r.t. transverse momentum
- ► Single particle efficiency w.r.t. radius
- Efficiency in jets
- ► Re-scaling Studies: R_{max} ∈ (2.1,2.0,1.9,1.8) m

(FCC

- Momentum resolution
- Impact parameter resolution
 - Also estimated for larger material budget in the vertex detector
- Single particle efficiency w.r.t. transverse momentum
- ► Single particle efficiency w.r.t. radius
- Efficiency in jets
- ► Re-scaling Studies: R_{max} ∈ (2.1,2.0,1.9,1.8) m

∩FCC

- Momentum resolution
- Impact parameter resolution
 - Also estimated for larger material budget in the vertex detector
- Single particle efficiency w.r.t. transverse momentum
- Single particle efficiency w.r.t. radius
- Efficiency in jets
- ► Re-scaling Studies: R_{max} ∈ (2.1,2.0,1.9,1.8) m

- Momentum resolution
- Impact parameter resolution
 - Also estimated for larger material budget in the vertex detector
- Single particle efficiency w.r.t. transverse momentum
- ► Single particle efficiency w.r.t. radius
- Efficiency in jets
- ► Re-scaling Studies: R_{max} ∈ (2.1,2.0,1.9,1.8) m

(FCC

- Momentum resolution
- Impact parameter resolution
 - Also estimated for larger material budget in the vertex detector
- Single particle efficiency w.r.t. transverse momentum
- Single particle efficiency w.r.t. radius
- Efficiency in jets
- ► Re-scaling Studies: R_{max} ∈ (2.1,2.0,1.9,1.8) m

- Momentum resolution
- Impact parameter resolution
 - Also estimated for larger material budget in the vertex detector
- Single particle efficiency w.r.t. transverse momentum
- Single particle efficiency w.r.t. radius
- Efficiency in jets
- ► Re-scaling Studies: R_{max} ∈ (2.1,2.0,1.9,1.8) m

Examples

O FCC

- Jet energy resolution including incoherent pair backgrounds
- Boson separation power
- Flavour Tagging

Examples

O FCC

- Jet energy resolution including incoherent pair backgrounds
- Boson separation power
- Flavour Tagging

Examples

O FCC

- Jet energy resolution including incoherent pair backgrounds
- Boson separation power
- Flavour Tagging

Examples

O FOC

- Jet energy resolution including incoherent pair backgrounds
- Boson separation power
- Flavour Tagging
 - Improving BTag performance by ignoring secondary vertices from material

17/22

Section 2:

FCCee Machine Detector Interface and Backgrounds

FCCee Machine Detector Interface and Backgrounds

► $L^* = 2.2 \text{ m}$

- LumiCal at $Z \approx 1$ m
- Figures from MDI Overview at FCC Week [3]

FCCee Machine Detector Interface and Backgrounds

- ► $L^* = 2.2 \text{ m}$
- LumiCal at $Z \approx 1$ m
- Figures from MDI Overview at FCC Week [3]

() FCC

Common Insert for Detectors? [3]

20 / 22

Backgrounds

- Most up-to-date background studies by A Ciarma [5]
 - Incoherent Pairs, Radiative Bhabhas, Synchrotron Radiation
- So far no special mitigation for the detector required

Section 3:

Software

Software

- ► The CLD detector model works with the Key4hep software stack
- ► *ddsim* for simulation
- Mostly Gaudi-Wrapped iLCSoft processors for reconstruction
- github.com/Key4hep/CLDConfig

23/22

References

- [1] N. Bacchetta et al. CLD A Detector Concept for the FCC-ee. 2019. arXiv: 1911.12230 [physics.ins-det].
- [2] Manuela Boscolo, Fabrizio Palla, et al. "The FCC-ee interaction region, design and integration of the machine elements and detectors, machine induced backgrounds and key performance indicators (FCC note)". In: (2023). DOI: 10.17181/w4kws-rne05. URL: https://new-cds.cern.ch/doi/10.17181/w4kws-rne05.
- Manuela Boscolo. "MDI Overview". In: FCC Week 2023. 2023. URL: https://indico.cern.ch/event/1202105/contributions/5385348/.
- [4] C. Grojean. "FCC physics case: the once, the now and the future". In: FCC Week 2022. 2022. URL: https://indico.cern.ch/event/1064327/contributions/4893259/.
- [5] Andrea Ciarma and Manuela Boscolo. "Detector background simulations". In: FCC Week 2023. 2023. URL: https://indico.cern.ch/event/1202105/contributions/5390909/.

Thank you for your attention