$\tilde{\tau}$ searches at future e⁺e⁻ colliders

Mikael Berggren¹, Terasa Núñuez¹, Jenny List¹

¹DESY, Hamburg

ILD meeting, CERN, Jan 2023

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

< ロ > < 同 > < 回 > < 回 >

Mikael Berggren (DESY)

Outline

- 2 $\tilde{\tau}$ properties at e⁺e⁻ colliders
- ILD full simulation analysis
 - WIP: Impact of specific ILD/ILC features

5 Conclusions

• • • • • • • • • • • • •

Problems with the standard model

The standard model works excellently - but there are problems:

- Theory-experiment discrepancies
 - g-2 of the muon
 - Flavour anomalies
 - Maybe M_W

Lack of explanations

- What is dark matter and dark energy?
- Naturalness and the hierarchy problem: Why is the Higgs mass so small, and why does it remains so?
- Why do the coupling constants not unify?
- Neutrinos are weird...
- Why is charge quantised?
- The SM gets the cosmological constant wrong by 120 orders of magnitude?!
- Fermi-Dirac statistics and infinitely dense black holes?

<ロト <回ト < 三ト < 三ト = 三

Problems with the standard model

The standard model works excellently - but there are problems:

- Theory-experiment discrepancies
 - g-2 of the muon
 - Flavour anomalies
 - Maybe *M_W*
- Lack of explanations
 - What is dark matter and dark energy?
 - Naturalness and the hierarchy problem: Why is the Higgs mass so small, and why does it remains so?
 - Why do the coupling constants not unify?
 - Neutrinos are weird...
 - Why is charge quantised?
 - The SM gets the cosmological constant wrong by 120 orders of magnitude?!
 - Fermi-Dirac statistics and infinitely dense black holes?

Problems with the standard model

The standard model works excellently - but there are problems:

- Theory-experiment discrepancies
 - g-2 of the muon
 - Flavour anomalies
 - Maybe *M_W*
- Lack of explanations
 - What is dark matter and dark energy?
 - Naturalness and the hierarchy problem: Why is the Higgs mass so small, and why does it remains so?
 - Why do the coupling constants not unify?
 - Neutrinos are weird...
 - Why is charge quantised?
 - The SM gets the cosmological constant wrong by 120 orders of magnitude?!
 - Fermi-Dirac statistics and infinitely dense black holes?

The need for BSM

So we need models beyond the SM. Two types:

- Well defined, but incomplete models tailored to address some of the issues
 - Simplified models
 - Portal models

• Complete self-consistent models. Not so many on the market:

- Extra dimensions
- Compositness
- Leptoquarks
- And SUSY.

The need for BSM

So we need models beyond the SM. Two types:

- Well defined, but incomplete models tailored to address some of the issues
 - Simplified models
 - Portal models
- Complete self-consistent models. Not so many on the market:
 - Extra dimensions
 - Compositness
 - Leptoquarks

• And SUSY.

イロト イ団ト イヨト イヨト

The need for BSM

So we need models beyond the SM. Two types:

- Well defined, but incomplete models tailored to address some of the issues
 - Simplified models
 - Portal models
- Complete self-consistent models. Not so many on the market:
 - Extra dimensions
 - Compositness
 - Leptoquarks
 - And SUSY.

イロト イ団ト イヨト イヨト

Introduction

The need for BSM

So we need r	SUSY offers solutions and/or hints to	
Well defi	solutions to	ss some of
the issue	 Naturalness, the hierarchy problem 	
 Simple Porta 	 ature of Dark Matter 	
Complete	• g-2	market:
• Extra	 Lightness and stability of the Higgs 	
 Com Lept 	 Coupling constant unification 	
And	 Quantisation of charge 	
	 Fermi-Dirac statistics in black holes 	
	 Smallness of the cosmological constant 	
	• but probably not DE, flavour	

イロト イヨト イヨト イヨト

SUSY

Also, apart from this, SUSY is a boilerplate for BSM in general: almost any new topology can be obtained in SUSY. To note:

- Naturalness, the hierarchy problem, the nature of Dark Matter, and g-2 prefer a light electroweak sector of SUSY.
- Many models and the global set of constraints from observations point to a compressed spectrum, i.e. the lightest (stable) SUSY particle (the LSP), and the next one (the NLSP) are close in mass.

SUSY at future e⁺e⁻ Higgs/EW/Tops factories

Wrt. LEP/SLC:

- Any Higgs factory
 - Increased luminosity
 - Improved detector technologies
- For linear Higgs factories
 - Centre-of-mass energy
 - Beam polarisation
 - More hermetic
 - Trigger-less operation of the detectors
- Wrt. hadron colliders:
 - Microscopic beam-spot
 - Cleaner environment
 - Known initial state
 - Trigger-less operation of the detectors
 - Hermetic detectors

A B b 4 B b

Motivation for $\tilde{\tau}$ searches

For SUSY seraches it is a Good Idea:

- To search for well motivated and maximally difficult NLSPs
- Since, if one can find this, then one can find any other NLSP

The $\tilde{\tau}$, the scalar super-partner of τ -lepton, satisfies both conditions.

• Well motivated:

- Due to mixing, likely to be the lightest sfermion.
- Can do co-annihilation.
- Least constrained from data.

• Difficult:

- Due to mixing, has lower cross-section than other sleptons and squarks
- Decays partially invisibly
- Mixing can further reduce detectability.

Motivation for $\tilde{\tau}$ searches

For SUSY seraches it is a Good Idea:

- To search for well motivated and maximally difficult NLSPs
- Since, if one can find this, then one can find any other NLSP
- The $\tilde{\tau}$, the scalar super-partner of τ -lepton, satisfies both conditions.
 - Well motivated:
 - Due to mixing, likely to be the lightest sfermion.
 - Can do co-annihilation.
 - Least constrained from data.

• Difficult:

- Due to mixing, has lower cross-section than other sleptons and squarks
- Decays partially invisibly
- Mixing can further reduce detectability.

Motivation for $\tilde{\tau}$ searches

For SUSY seraches it is a Good Idea:

- To search for well motivated and maximally difficult NLSPs
- Since, if one can find this, then one can find any other NLSP
- The $\tilde{\tau}$, the scalar super-partner of τ -lepton, satisfies both conditions.
 - Well motivated:
 - Due to mixing, likely to be the lightest sfermion.
 - Can do co-annihilation.
 - Least constrained from data.
 - Difficult:
 - Due to mixing, has lower cross-section than other sleptons and squarks
 - Decays partially invisibly
 - Mixing can further reduce detectability.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The $\tilde{\tau}$...

- Two weak hypercharge eigenstates ($\tilde{\tau}_R, \tilde{\tau}_L$), not mass degenerate
- Mixing yields to the physical states (\(\tilde{\tau}_1, \tilde{\tau}_2)\), the lightest one being likely to be the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - Pair produced in s-channel via Z^0/γ exchange. Low σ since $\tilde{\tau}$ -mixing suppresses coupling to the Z^0 .
 - Decay to LSP and $\tau,$ implying more difficult signal identification than the other sfermions

Limits at LEP and LHC/HL-LHC

• Unpublished LEP combination, LEPSUSYWG/04-01.1

- PDG: Best published limit (DELPHI) 81.9 GeV (any mixing if ΔM > 15 GeV), 26.3 for any mixing and ΔM
- Limited by energy, luminosity and trigger
- LHC : ATLAS modeldependent (only for τ̃_R), excludes only very high ΔM. No discovery potential..
- HiLumi: exclude somewhat higher τ̃_R masses for very high ΔM. No discovery potential..

Limits at LEP and LHC/HL-LHC

• Unpublished LEP combination, LEPSUSYWG/04-01.1

- PDG: Best published limit (DELPHI) 81.9 GeV (any mixing if ΔM > 15 GeV), 26.3 for any mixing and ΔM
- Limited by energy, luminosity and trigger
- LHC : ATLAS modeldependent (only for τ̃_R), excludes only very high ΔM. No discovery potential..
- HiLumi: exclude somewhat higher τ̃_R masses for very high ΔM. No discovery potential..

< ロ > < 同 > < 回 > < 回 >

Mikael Berggren (DESY)

Mikael Berggren (DESY)

Mikael Berggren (DESY)

Mikael Berggren (DESY)

Mikael Berggren (DESY)

 $\tilde{\tau}$ properties at e⁺e⁻ colliders

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Production & decay

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Backgrounds

SM processes with real or fake missing energy

イロト イポト イヨト イヨト

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Backgrounds

SM processes with real or fake missing energy Irreducible

• 4-fermion production with two of the fermions being neutrinos and two τ 's

$\tilde{\tau}$ properties at e⁺e⁻ colliders: Backgrounds

SM processes with real or fake missing energy Irreducible

 4-fermion production with two of the fermions being neutrinos and two τ's

Almost Irreducible

- $e^+e^- \rightarrow \tau \tau$, $ZZ \rightarrow \nu \nu II$, $WW \rightarrow I \nu I \nu$ $(I = e \text{ or } \mu)$
- $e^+e^- \rightarrow \tau \tau + ISR$, $e^+e^- \rightarrow \tau \tau ee$, $\gamma \gamma \rightarrow \tau \tau$
- Mis-identification of *τ*'s or of missing momentum

- Production cross-section depends on mixing.
- Visibility depends on the τ polarisation, and τ polarisation depends on both τ̃ and neutralino nature.
- So, to get the worst case, the combination of low cross-section and low visibility should be found.

< ロ > < 同 > < 回 > < 回 >

- Production cross-section depends on mixing.
- Visibility depends on the τ polarisation, and τ polarisation depends on both τ̃ and neutralino nature.
- So, to get the worst case, the combination of low cross-section and low visibility should be found.

Events 60 /ixing angle 50 0 der 20 den 40 dec 400 50 dec 55 dec 90 dec 300 200 100 20 80 40 60 100 120 p_π [GeV]

Bino LSP, $m_{=} = 200 \text{ GeV}, \Delta \text{ M} = 100 \text{ GeV}$

- Production cross-section depends on mixing.
- Visibility depends on the τ polarisation, and τ polarisation depends on both τ̃ and neutralino nature.
- So, to get the worst case, the combination of low cross-section and low visibility should be found.

Events 60 /ixing angle 50 0 der 20 den 10 doo 400 50 dec 90 dec 300 200 100 20 80 40 60 100 120 p_π [GeV]

• • • • • • • • • • • •

- At ILC, both beams are polarised, and same luminosity will be collected for LR and RL beams. so:
- Use Likelihood-ratio statistic to weight both polarisations.
- Then, the sensitivity becomes \sim uniform wrt. mixing angles, with a slight minimum at \sim 55°

< 回 > < 三 > < 三 >

- At ILC, both beams are polarised, and same luminosity will be collected for LR and RL beams. so:
- Use Likelihood-ratio statistic to weight both polarisations.
- Then, the sensitivity becomes \sim uniform wrt. mixing angles, with a slight minimum at \sim 55°

< 回 > < 三 > < 三 >

- At ILC, both beams are polarised, and same luminosity Neyman-Pearson's lemma applied to a LR and R counting experiment • Use Likeli weight bo • Then, the $N_{\sigma} = \frac{\sum_{i=1}^{n_{samp}} s_i \ln (1 + s_i/b_i)}{\sqrt{\sum_{i=1}^{n_{samp}} n_i [\ln (1 + s_i/b_i)]^2}}$
- Then, the $\sqrt{\sum_{i=1}^{n_{samp}} n_i \left[\ln (1 + s_i/b_i) \right]^2}$ \sim uniform (n_i is either $s_i + b_i$ (exclusion), or b_i (discovery))

< 回 > < 三 > < 三 >

- At ILC, both beams are polarised, and same luminosity will be collected for LR and RL beams. so:
- Use Likelihood-ratio statistic to weight both polarisations.
- Then, the sensitivity becomes \sim uniform wrt. mixing angles, with a slight minimum at $\sim 55^{\circ}$

< ロ > < 同 > < 回 > < 回 >

ILD full simulation analysis: MC samples

- Use the IDR 500 GeV FullSim samples
- Covering the full SM background with all $e^+e^-/e^{+/-}\gamma/\gamma\gamma$ processes (> 10⁷ events)
- Beam-spectrum and pairs background from GuineaPig, low P_T hadrons from Barklow generator.
- Signal
 - Spectrum obtained with Spheno.
 - Generated with Whizard
 - Simulated with SGV, with pairs and low P_T hadrons extracted from full-sim
 - 10000 events per point and polarisation,
 - 1867 mass-points, 37×10^6 events.

ILD full simulation analysis: Event selection

Properties $\tilde{\tau}$ -events "must" have

- Missing energy: $E_{miss} > 2 \times M_{LSP}$ GeV
- Visible mass: $M_{vis} < 2 imes (M_{\widetilde{ au}} M_{LSP})$ GeV
- Momentum of all jets: $p_{jet} < 70\% E_{beam}$ (or $M_{\tilde{\tau}}/M_{LSP}$ dependent)

Well-known initial stat and hermeticity !

- Two well identified τ 's and little other activity
- Maximum jet momentum:

$$P_{max} = \frac{\sqrt{s}}{4} \left(1 - \left(\frac{M_{LSP}}{M_{\tilde{\tau}}} \right)^2 \right) \left(1 + \sqrt{1 - \frac{4M_{\tilde{\tau}}^2}{s}} \right)$$

Clean final state with no pile-up.

ILD full simulation analysis: Event selection

Properties $\tilde{\tau}$ -events "must" have

- Missing energy: $E_{miss} > 2 \times M_{LSP}$ GeV
- Visible mass: $M_{vis} < 2 \times (M_{\widetilde{ au}} M_{LSP})$ GeV
- Momentum of all jots: $p_{\rm eff} < 70\%$ F. (or $M_{\rm eff}/M_{\rm eff}$ dependent)

Well-known ir Above 95 % signal efficiency after these

- Two well cuts (excluding for the τ -identification)
- Maximum jet momentum:

$$P_{max} = \frac{\sqrt{s}}{4} \left(1 - \left(\frac{M_{LSP}}{M_{\tilde{\tau}}} \right)^2 \right) \left(1 + \sqrt{1 - \frac{4M_{\tilde{\tau}}^2}{s}} \right)$$

Clean final state with no pile-up.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

ILD full simulation analysis: Event selection

Properties $\tilde{\tau}$'s "might" have, but background "rarely" has

- Missing P_T
- Large acoplanarity
- Large P_T wrt. thrust-axis (ρ)
- High angles to beam

properties of irreducible sources of background

- Charge asymmetry $(q_{jet} \cos \theta_{jet})$
- Difference between visible mass and Z mass
- Properties that background often "does not" have
 - Low energy in small angles
 - Low energy of isolated neutral clusters

 e^+e^- beams are accompanied by real and virtual photon Interactions between these produce:

- Low p_T hadrons
 - At ILC500 $\langle N\rangle{=}1.05/BX,$ CLIC380(3000) $\langle N\rangle{=}0.17(3.1)/BX,$ FCCee $\langle N\rangle$ =0/BX
 - Low $p_{\mathcal{T}}$ hadrons are "physics": the total number collected scale with $\int \mathcal{L}$
- e⁺e⁻pairs
 - At ILC, 10^5 pairs per bunch crossing, but only \sim 10 will hit any tracking detector.
 - Absent at FCCee

 $\gamma\gamma$ interactions are independent of the e⁺e⁻ process, but can happen simultaneously to it (overlay-on-physics events) or not (overlay-only events)

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.

- $\Delta M = 3 \text{ GeV}$
- $\Delta M = 10 \text{ GeV}$

 Larger effect for low △M, hardly any for △M > 10 GeV.

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.

- $\Delta M = 3 \text{ GeV}$
- $\Delta M = 10 \text{ GeV}$

 Larger effect for low ΔM, hardly any for ΔM > 10 GeV.

Overlay-on-physics events: Not an issue at FCCee, due to low per-BX luminosity.

Green: No overlay, Red,Blue: with overlay with or w/o mitigation. $M_{\tilde{\tau}}$ =240 GeV.

- $\Delta M = 3 \text{ GeV}$
- Larger effect for low ΔM, hardly any for ΔM > 10 GeV.

- Overlay-only events are $\sim 10^3$ more than any other SM background, and $\sim 10^6$ times higher than the signal !
- $\gamma \gamma \rightarrow \text{low } p_T$ hadrons looks like $\tilde{\tau}$ production for $\Delta M \leq 10 \text{ GeV}$).
- Similar for ILC and FCCee

Not enough MC statistics to estimate the suppression from single set of cuts!

Identify a set of independent cuts: total rejection factor as the product of the factors obtained with either.

- Achieved rejection factor factor: $\sim 8.2 \times 10^{-11}$ for $\Delta M = 2$; 1.8×10^{-10}) for $\Delta M = 10$.
- In total, 70 or 30 additional background events expected from overlay-only.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

- Overlay-only events are $\sim 10^3$ more than any other SM background, and $\sim 10^6$ times higher than the signal !
- $\gamma\gamma \rightarrow \text{low } p_T$ hadrons looks like $\tilde{\tau}$ production for $\Delta M \leq 10 \text{ GeV}$).
- Similar for ILC and FCCee
- Not enough MC statistics to estimate the suppression from single set of cuts!

Identify a set of independent cuts: total rejection factor as the product of the factors obtained with either.

- Achieved rejection factor factor: $\sim 8.2 \times 10^{-11}$ for $\Delta M = 2$; 1.8×10^{-10}) for $\Delta M = 10$.
- In total, 70 or 30 additional background events expected from overlay-only.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

- Overlay-only events are $\sim 10^3$ more than any other SM background, and $\sim 10^6$ times higher than the signal !
- $\gamma \gamma \rightarrow \text{low } p_T$ hadrons looks like $\tilde{\tau}$ production for $\Delta M \leq 10 \text{ GeV}$).
- Similar for ILC and FCCee
- Not enough MC statistics to estimate the suppression from single set of cuts!

Identify a set of independent cuts: total rejection factor as the product of the factors obtained with either.

- Achieved rejection factor factor: $\sim 8.2 \times 10^{-11}$ for $\Delta M = 2$; 1.8×10^{-10}) for $\Delta M = 10$.
- In total, 70 or 30 additional background events expected from overlay-only.
- Some slight effect at $\Delta M = 2$, completely negligible wrt. other backgrounds at $\Delta M = 10$.

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

- Current model-independent limits for Δ*M* > τ mass come from LEP
- Final result of our study arXiv:2105.08616
- At ILC discovery and exclusion are almost the same.
- Extra treat: Extrapolations to 250 GeV and 1 TeV

WIP: Impact of specific ILD/ILC features: Polarisation

Polarisation:

- Combination different polarisation samples allows for equal sensitivity to all mixing angles
- Polarisation provides higher sensitivity: Likelihood ratio weighting.
- Both beams polarised: Effective luminosity for s-channel processes increased, +24 % for ILC wrt. FCCee.

Clear edge for ILC - CLIC/C3 only e⁻ polarisation, FCCee has no polarisation. CepC studies if polarisation *might* be possible.

WIP: Impact of specific ILD/ILC features: Polarisation

Polarisation:

- Combination different polarisation samples allows for equal sensitivity to all mixing angles
- Polarisation provides higher sensitivity: Likelihood ratio weighting.
- Both beams polarised: Effective luminosity for s-channel processes increased, +24 % for ILC wrt. FCCee.

Clear edge for ILC - CLIC/C3 only e⁻ polarisation, FCCee has no polarisation. CepC studies if polarisation *might* be possible.

WIP: Impact of specific ILD/ILC features: Luminosity, Energy

Luminosity, the strong points for FCCee and CepC.

- But: higher luminosity gives only very little improvement
 - Ex. 2 to 5 (10) ab^{-1} at 250 GeV for $\Delta M = 2$ GeV changes excl. limit on $M_{\tilde{\tau}}$ from 122 to 117 (117) GeV, negligible for $\Delta M = 10$ GeV

Energy, the main advantage for any linear option:

 increase in centre-of-mass energy covers much more parameter space, up to close to kinematic limit

WIP: Impact of specific ILD/ILC features: Beam-induced backgrounds, triggerless operation

Beam-induced backgrounds:

- Overlay-on-physics: Due to low per-BX-luminosity this is not an issue for the circular colliders.
- Overlay-only: to first order, similar for both options (goes with total luminosity)
- The details enter: Smaller beam-spot, triggerless operation, thinner beam-pipe and vertex detector, polarisation, all makes the linear options more powerful

Triggerless operation:

Big advantage when searching for unexpected signatures

Possible at linear colliders due to low collision frequency, not possible at circular colliders

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Very bad for , e $\gamma\gamma \rightarrow \mu\mu$ for (beam-remna)
- ... but less sc is from the ne
- However, ρ v; see the differ e⁺ - are back-to-back, or i

< ロ > < 同 > < 回 > < 回 >

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Very bad for $\tilde{\mu}$: $P_{T miss}$ of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Very bad for $\tilde{\mu}$: $P_{T miss}$ of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Very bad for $\tilde{\mu}$: $P_{T \text{ miss}}$ of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

< ロ > < 同 > < 回 > < 回 >

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

- ILD at ILC: hermetic to 6 mrad Any detector at FCCee; hermetic to 50 mrad.
- Very bad for $\tilde{\mu}$: $P_{T \text{ miss}}$ of μ -pair for $\gamma\gamma \rightarrow \mu\mu$ for events where the beam-remnant not seen...
- ... but less so for τ̃: Much missing P_T is from the neutrinos.
- However, ρ variable is designed to see the difference between τ:s that are back-to-back, or not.

< ロ > < 同 > < 回 > < 回 >

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

Hermeticity: The issue is can you see the beam-remnant $e^{+/-}$ in $\gamma\gamma$ processes ? If not, false missing P_T will be seen ...

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- *τ* mixing and LSP nature influence production cross-sections and decay kinematics ⇒ picked "worst scenario" for actual analysis
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the τ̃ mass limit only by 5 GeV
- Hermeticity of detector crucial

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the τ̃ mass limit only by 5 GeV
- Hermeticity of detector crucial

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- *τ* mixing and LSP nature influence production cross-sections and decay kinematics ⇒ picked "worst scenario" for actual analysis
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the τ mass limit only by 5 GeV
- Hermeticity of detector crucial

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- *τ* mixing and LSP nature influence production cross-sections and decay kinematics ⇒ picked "worst scenario" for actual analysis
- Polarised beams: combination of data-taking with different signs enables equal sensitivity to all mixing angles
- Beam-induced backgrounds at Linear Colliders can be mitigated up to small residual impact of \sim 1GeV on highest reachable mass for lowest ΔM
- Higher centre-of-mass energies cover much more parameter space, higher luminosity gives only very little improvement, ex. increase of ILC250 luminosity from 2 to 10 ab⁻¹ affects the $\tilde{\tau}$ mass limit only by 5 GeV
- Hermeticity of detector crucial

Conclusions

- Even after HL-LHC τ̃-LSP mass plane will remain almost completely unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches

٩	$\tilde{\tau}$ mixing Future linear electron-positron colliders decay kir are well suited for discovering/ excluding	ections and analysis
٩	Polarisec $\tilde{\tau}$'s for any $\tilde{\tau}$ -LSP mass difference and enables , any $\tilde{\tau}$ -mixing nearly up to the kinematic	rent signs
•	Beam-ind up to sm for lowes	 mitigated hable mass
•	amelioration of the limits from LEP can be Higher cf expected. space, higher cf expected. increase of ILC250 luminosity from 2 to 10 ab ⁻¹ affect mass limit only by 5 GeV	ameter ment, ex. ets the $\tilde{\tau}$

Mikael Berggren (DESY)