

Determination of CPV Higgs mixing angle in ZZ-fusion at 1 TeV ILC

N. Vukasinovic, I. Bozovic, G. Kacarevic

VINCA Institute of Nuclear Sciences, Belgrade, Serbia

15 -17 January 2024 CERN

Outline

- 1. Could 125 GeV Higgs mass eigenstate be a CPV mixture of CP-odd and CP-even states of the extended Higgs sector via mixing angle Ψ_{CP} ?
- 2. If so, with what precision can this effect be measured at ILC (1 TeV e⁺e⁻ linear collider)?
- 3. What is the interpretation of measurement sensitivity in the context of Snowmass CPV White paper [arXiv:2205.07715v3]?

CP-sensitive observable

Generic model of CPV mixing: $h_{125} = H \cdot \cos \Psi_{CP} + A \cdot \sin \Psi_{CP}$

- CP-sensitive observable: angle between production planes $\Delta \Phi$
- As shown in <u>arXiv:2203.11707v3 (S. Qiyu et al.)</u> $\Delta \Phi$ carries the most information on the Higgs CP state
- $\Delta \Phi$ can be retrieved in the following way:

$$\Delta \Phi = sgn \left(\Delta \Phi \right) \cdot \arccos(\vec{n}_1 \cdot \vec{n}_2)$$

$$sgn\left(\Delta\Phi\right) = \frac{\vec{q}_1 \cdot (\vec{n}_1 \times \vec{n}_2)}{|\vec{q}_1 \cdot (\vec{n}_1 \times \vec{n}_2)|}$$

$$\vec{n}_1 = \frac{\vec{q}_{e_i^-} \times \vec{q}_{e_f^-}}{\left| \vec{q}_{e_i^-} \times \vec{q}_{e_f^-} \right|} \qquad \vec{n}_2 = \frac{\vec{q}_{e_i^+} \times \vec{q}_{e_f^+}}{\left| \vec{q}_{e_i^+} \times \vec{q}_{e_f^+} \right|}$$

Event samples

1 TeV	σ (fb)	Expected in 8 ab ⁻¹ full range	Reconstructed MC events			
SIGNAL: $e^+e^- \rightarrow Hee, H \rightarrow b\overline{b}$	13	104000	2 · 10 ⁵ DELPHES 3495 full sim.			
$e^+e^- \rightarrow b\bar{b}l^+l^-$ $e^+e^- \rightarrow q\bar{q}l^+l^-$	255	2 · 10 ⁶	1 · 10 ⁶ DELPHES 5886 full sim.			
$e^+e^- ightarrow q \overline{q}$	9375	75 · 10 ⁶	120343 full sim.			
$e^+e^- ightarrow q\bar{q}lv$	4116	$32.9 \cdot 10^{6}$	955058 full sim.			

Energies up to 1 TeV are optimal due to interplay of x-section and centrality

ILC	\sqrt{s}	$\int \mathcal{L} dt$ (baseline)
	0.1 - 1 TeV	2 ab ⁻¹ @ 250 GeV 0.2 ab ⁻¹ @ 350 GeV 4 ab ⁻¹ @ 500 GeV 8 ab ⁻¹ @ 1 TeV

- Generator level WHIZARD V2.8.3/UFO/Higgs characterization model for signal and WHIZARD 1.95/SM for background events
- Beams are unpolarised

Event selection

- Preselection electron isolation:
 - $m_{e^+e^-}$ > 200 GeV (exclude HZ)
 - $E_{e^{\pm}} > 60 \text{ GeV}$
 - DELPHES electron isolation:
 - $\Delta R_{\rm max} = 0.5$
 - $p_{T\min} = 0.5 \text{ GeV}$ • $I = \frac{\sum_{i \neq P}^{p_T(i) > p_T \min} p_T(i)}{p_T(P)} < 0.12$
- Signal preselection efficiency: ~ 71%
- Selection cuts:
 - 80 GeV < $m_{q\bar{q}}$ < 160 GeV
 - m_{Z_1,Z_2} > 30 GeV
 - *p_{Tee}* > 15 GeV
 - $p_{T \, miss} < 150 \, GeV$
- Selection efficiency: 96%
- Total signal efficiency: $\sim 68\%$

Generated and reconstructed signal

Generated information (WHIZARD), uncorrected and corrected reconstructed signal

- Acceptance correction needed to retrieve full physical information
- Generated information is reasonably well reproduced with corrected reconstructed data

N. Vukasinovic

CP-observable $\Delta\Phi$ and mixing angle Ψ_{CP}

Minimum of $\Delta \Phi$ shifts for non-zero Ψ_{CP} values

• Differently from the H $\rightarrow \tau \tau$ angular observable whose dependence on Ψ_{CP} can be derived from the differential x-section, here is no simple analytical dependence, which has to be extracted **empirically**

CERN

Position of local minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;

1. Determine position of the minimum b/a by performing the fit function:

 $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(a \cdot \Delta \Phi - b)$

2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} :

 $(b/a)/\Psi_{CP} = k \cdot \Psi_{CP} + m$

3. Determine (from simulation) coefficients of the linear function (k, m);

4. Ψ_{CP} can be retrieved from quadratic equation:

 $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

Position of local minimum of $\Delta \Phi$ is sensitive to $\Psi_{\rm CP}$;

 Determine position of the minimum b/a by performing the fit function:

 $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(a \cdot \Delta \Phi - b)$

2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} :

 $(b/a)/\Psi_{CP} = k \cdot \Psi_{CP} + m$

- 3. Determine (from simulation) coefficients of the linear function (k, m);
- 4. Ψ_{CP} can be retrieved from quadratic equation:

 $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

CERN

Position of local minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;

1. Determine position of the minimum b/a by performing the fit function:

 $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(a \cdot \Delta \Phi - b)$

2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} :

 $(b/a)/\Psi_{CP} = k \cdot \Psi_{CP} + m$

3. Determine (from simulation) coefficients of the linear function (k, m);

4. $\Psi_{\rm CP}$ can be retrieved from quadratic equation:

 $k \cdot \Psi_{CP}^{2} + m \cdot \Psi_{CP} - (b/a) = 0$

Red line illustrates dependence $\Psi_{exp} = \Psi_{true}$

Position of local minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;

1. Determine position of the minimum b/a by performing the fit function:

 $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(a \cdot \Delta \Phi - b)$

- 2. Position (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} :
 - $(b/a)/\Psi_{CP} = k \cdot \Psi_{CP} + m$
- 3. Determine (from simulation) coefficients of the linear function (k, m);
- 4. $\Psi_{\rm CP}$ can be retrieved from quadratic equation:

 $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

Pseudo-experiments

- 2000 pseudo-experiments give 4 mrad for statistical dissipation of the mean
- Pull distribution indicates that uncertainties are correctly estimated
- Systematic error from the fit parameters uncertainties gives < 1 mrad
- N. Vukasinovic

Interpretation

- Common framework for interpretation of CPV results is defined in the Snowmass CPV White paper
- Benchmark parameter f_{CP} quantifies relative contribution from CP-odd amplitude

$$f_{CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{CP \text{ odd}}}{\Gamma_{H \to X}^{CP \text{ odd}} + \Gamma_{H \to X}^{CP \text{ even}}} \qquad f_{CP}^{hVV} = \frac{|a_3^{hVV}|^2}{\sum_i |a_i^{hVV}|^2 (\sigma_i / \sigma_3)}.$$

- For the pure scalar state $f_{CP} \sim \sin^2(\Delta \Psi_{CP})$
- Interpretation for LHC/HL-LHC and future Higgs factories, for EFT and CP-sensitive observable based measurements
 (68% CL, pure scalar)

				(08% CL, pure scalar)					<u>ai xiv.2205.0771505</u>				
Collider	pp	pp	pp	e^-e^+	e^-e^+	e^-e^+	e^-e^+	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target	
E(GeV)	14.000	14.000	100.000	250	350	500	1.000	1.300	125	125	3.000	(theory)	
$\mathcal{L} ext{ (fb}^{-1})$	300	3.000	30.000	250	350	500	1.000	1.000	250	20	1.000		
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	✓	✓	✓	✓	$< 10^{-5}$	
$H\gamma\gamma$		0.50	✓						0.06			$< 10^{-2}$	
$HZ\gamma$		~ 1	✓				~ 1					$< 10^{-2}$	
Hgg	0.12	0.011	✓									$< 10^{-2}$	
$Ht\bar{t}$	0.24	0.05	✓			0.29	0.08	✓			✓	$< 10^{-2}$	
$H\tau\tau$	0.07	0.008	✓	0.01	0.01	0.02	0.06		✓	✓	✓	$< 10^{-2}$	
$H\mu\mu$										✓		$< 10^{-2}$	

Interpretation

1 TeV ILC, ILD

- ✓ First measurement in VBF at an e^+e^-
- ✓ Full background simulation of ILD detector and fast simulation of the signal
- ✓ Realistic ILC running scenario

Collider	pp	pp	pp	e^-e^+	e^-e^+	e^-e^+	e^-e^+	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$^{-}\mu^{+}\mu^{-}$	target
E(GeV)	14.000	14.000	100.000	250	350	500	1.000	1.300	125	125	3.000	(theory)
\mathcal{L} (fb ⁻¹)	300	3.000	30.000	250	350	500	1.000	1.000	250	20	1.000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	√	✓	✓	✓	$ < 10^{-5}$
$H\gamma\gamma$		0.50	✓				1 TeV		0.06			$< 10^{-2}$
$HZ\gamma$		~ 1	✓				8 a b -1					$ < 10^{-2}$
Hgg	0.12	0.011	✓									$ < 10^{-2}$
$Htar{t}$	0.24	0.05	✓			0.29	- 1.6 · 10 ⁻⁵	✓			✓	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06		✓	\checkmark	\checkmark	$ < 10^{-2}$
$H\mu\mu$										✓		$ < 10^{-2}$

(68% CL, pure scalar)

arXiv:2205.07715v3

Summary

- This is the first result in VBF fusion at an e⁺e⁻ collider;
- Complete simulation of CP Higgs mixing angle (Ψ_{CP}) measurement, at 1 TeV ILC with the ILD detector;
- From 8 ab⁻¹ of 1 TeV ILC data, pure scalar state should be measured with 4 mrad statistical uncertainty of Ψ_{CP} at 68% CL;
 Systematic uncertainty from the fit is found to be smaller (< 1 mrad);
- CP factor f_{CP} can be mesured down to $1.6 \cdot 10^{-5}$ approaching the theoretical target corresponding to the 10% admixture of the CP-odd state.

Backup

N. Vukasinovic

Reconstructed signal

