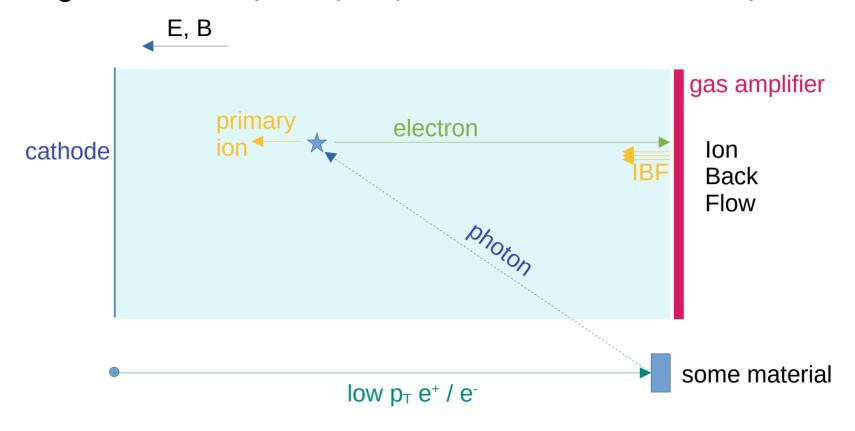

beamstrahlung backgrounds in the TPC @ FCCee & ILC

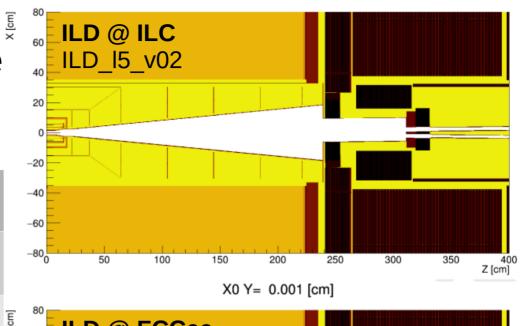
preliminary

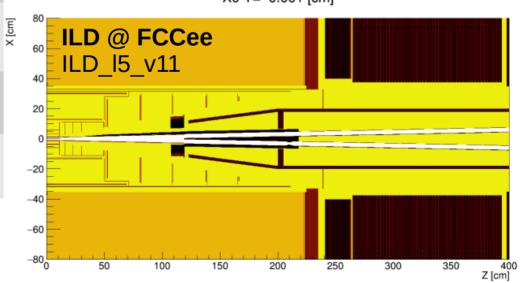
Daniel Jeans / KEK


ILD workshop

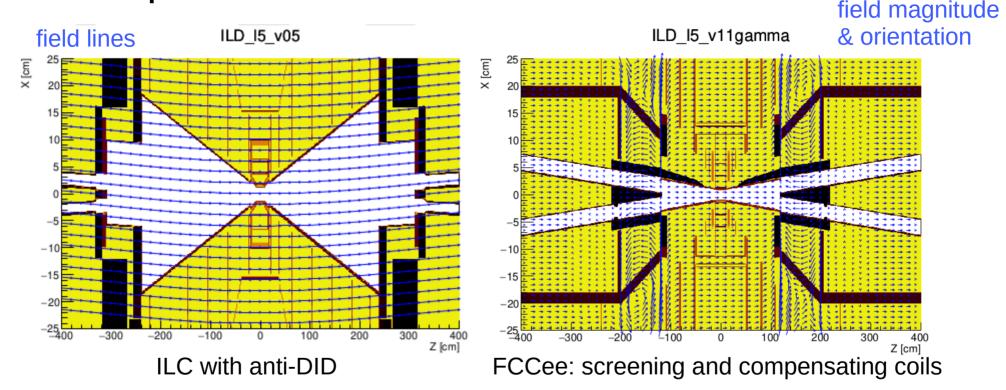
Jan 2024

collisions up to 0.44s earlier


$beam\ backgrounds: usually\ small\ p_{\scriptscriptstyle T}\ \to\ particles\ do\ not\ reach\ TPC\ directly$



X0 Y= 0.001 [cm]


machine-detector interface

	ILC	FCCee
crossing angle	14 mrad	30 mrad
L* [distance from IP to last accel focusing quadupole magnet]	4.1 m	2.0 m
detector solenoid	3.5 T	2.0 T
additional B-fields	anti-DID (?)	compensatingscreening

field maps

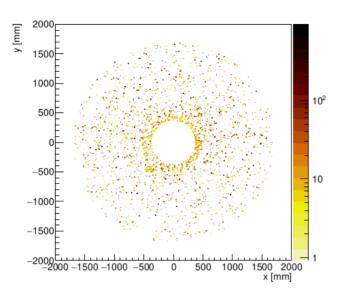
beamstrahlung: many very low energy e+e- created in bunch collisions

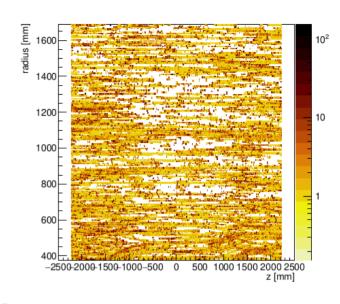
very different bunch structure, materials and fields in the forward region

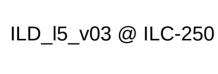
→ major effect on beamstrahlung backgrounds?

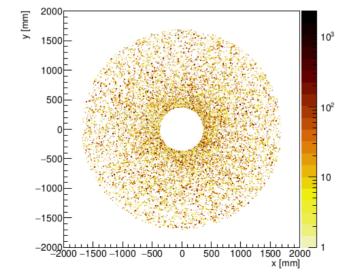
GuineaPig: program to simulate beamstrahlung

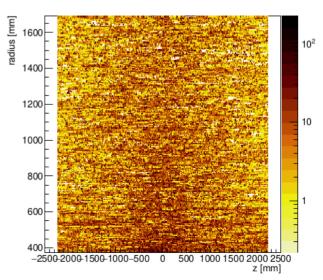
```
beamstrahlung pairs @
ILC-250 (from ILD/Mikael Berggren)
FCCee-91, FCCee-240 (from FCCee/Andrea Ciarma)
```


simulate in various DD4hep ILD detector models: using ddsim/DD4hep/Geant4 some special parameters to correctly track low p_⊤ particles


```
ILD @ ILC :
uniform 3.5T
uniform 2.0T
field map with and without anti-DID
```


ILD @ FCCee :
uniform 2.0T
field map for central region


TPC hits superimpose 100 bunch crossings


ILD_I5_v11y @ FCCee-91

estimate number of **primary ions** produced in the TPC per bunch crossing → geant4 energy deposit / effective ionisation potential of Ar [26 eV]

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	

large variations between bunch crossings

beamstrahlung much weaker @ FCCee

→ bunches less focused

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	

reducing field to 2T has modest effect at FCCee, large effect at ILC

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200	
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110	

anti-DID reduces TPC background by factor ~2 at ILC-250 4~10 at FCCee

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200	
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110	
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400	
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900	

FCCee MDI system induces ~50x increase in TPC activity compared to ILC

detailed description of field has modest effect with FCCee MDI

			FCCee-91	FCCee-240	ILC-250	
model	B-field [T]	MDI	thousand ions / bunch crossing			
			mean \pm RMS			
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150	
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300	
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200	
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110	
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400	
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900	

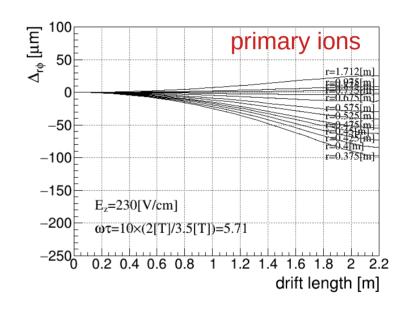
"realistic" situations : a few 100k \rightarrow 1M primary ions / BX

ILC and FCCee are similar

TPC integrates over many collisions; maximum ion drift time ~ 0.44 s

roughly estimate number of primary ions in the TPC volume (~42 m³) at any time, taking account of different collision rates

number of ions ~ primary ions/BX * BX freq * max drift time * 50% [some ions already reached cathode]


Collider	FCCee-91	FCCee-240	ILC-250
Detector model	ILD_15_v11γ	ILD_ $15_v11\gamma$	ILD_15_v05
average BX frequency	30 MHz	800 kHz	6.6 kHz
primary ions / BX	270 k	800 k	450 k
primary ions in TPC at any time	1.8×10^{12}	1.4×10^{11}	6.5×10^{8}
average primary ion charge density nC/m ³	6.8	0.54	0.0025

primary ion density in TPC: 2500 times higher at FCCee-91 than ILC-250 200 times higher at FCCee-240 than ILC-250

how does this compare to other sources of primary ionisation?

- e⁺ e⁻ → q q @ 91 GeV : ~1 M primary ions per event @ ~50 kHz [FCCee] → 10¹⁰ primary ions in TPC at any time cf. 2x10¹² from beamstrahlung @ FCCee-91
- $e^+ \ e^- \to q \ q \ @ \ 91 \ GeV :$ primary ions give rise to maximum drift distortions in R-phi of ~100 µm seem stable @ few-micron level

beamstrahlung background seems \sim 200 times more severe than $e^+e^- \rightarrow q q$

using naive scaling, maximum distortions due to beamstrahlung (primary ions only) → 20 mm

compare to ALICE-TPC

ALICE TPC upgrade TDR: CERN-LHCC-2013-020

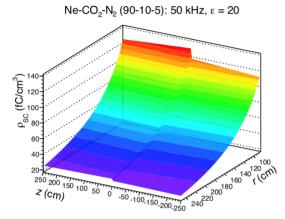
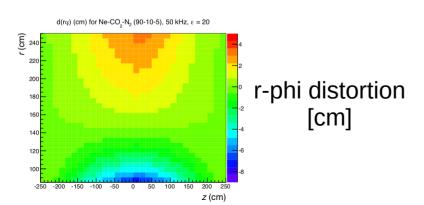
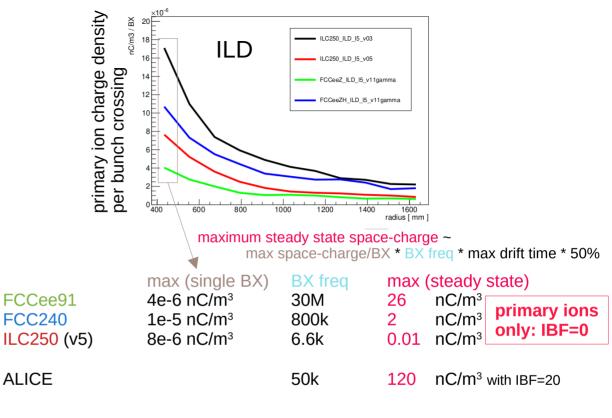




Figure 7.7: Average space charge density for Ne-CO₂-N₂ (90-10-5), $R_{int} = 50$ kHz and $\varepsilon = 20$. assumed ion back flow factor ε : 20 secondary ions / primary

20~120 fC/cm³ → cm-level distortions

TPC at FCCee91 with IBF of 3~5

→ similar space-charge as at ALICE

O(1~10) cm max distortions

consistent with our "first-principles" estimate

mitigation: my naive ideas

stability of distortions wrt time, operating conditions, ...?

measure space charge distribution?

correct the distortions?

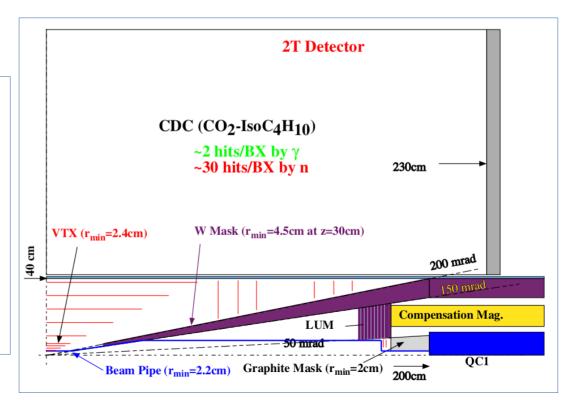
effect on tracking performance (including inner silicon hits)?

mitigation: my naive ideas

dominated by MDI elements: redesign to reduce back-scatter?

https://www-jlc.kek.jp/~sugimoto/jlc/ir/lcws2k.pdf

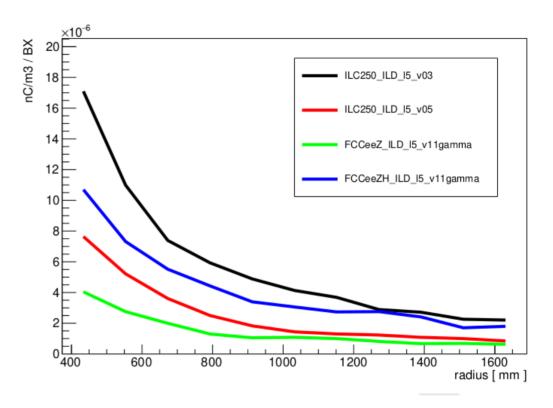
New JLC Mask System at B=3T


Y. Sugimoto

KEK

@LCWS2000

Contents:

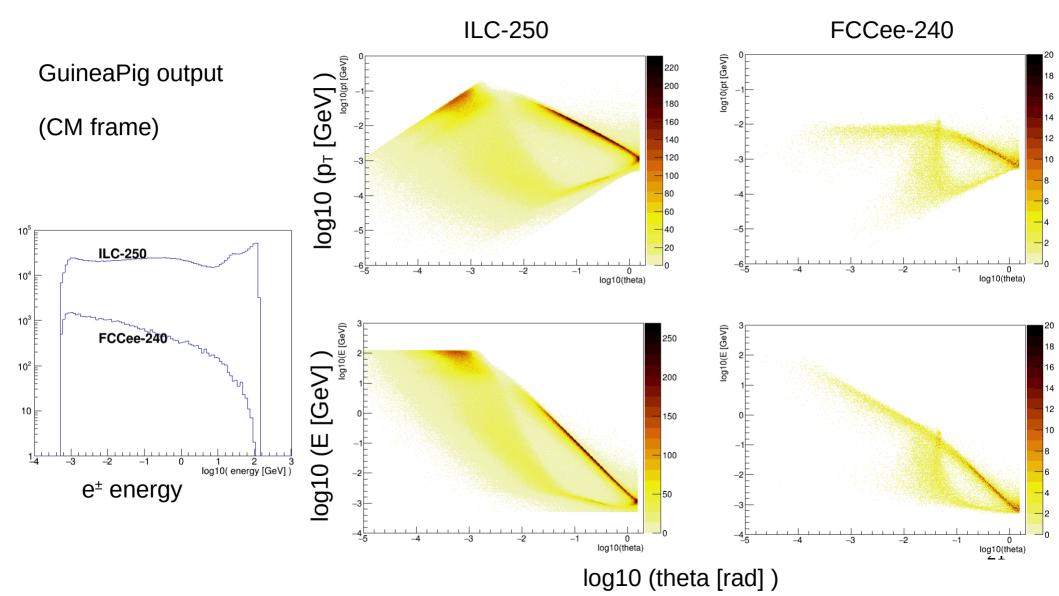

- Pair background hits in JLC detector models
 - --- 2T, $3T(1^*=2m)$, $3T(1^*=4.3m)$
- Beam background from disrupt beam
 - --- Preliminary design of the beam extraction line

mitigation: my naive ideas

more harsh at small radii

→ increase TPC inner radius ?

Summary


TPC background from beamstrahlung: same order **per BX** at ILC250 and FCCee

average BX frequency: 4.5k times higher at FCCee

TPC ions from **beamstrahlung** dominate those from ee → qq @ FCCee-91

TPC at FCCee-91 with IBF~4 looks similar to ALICE-TPC

backup

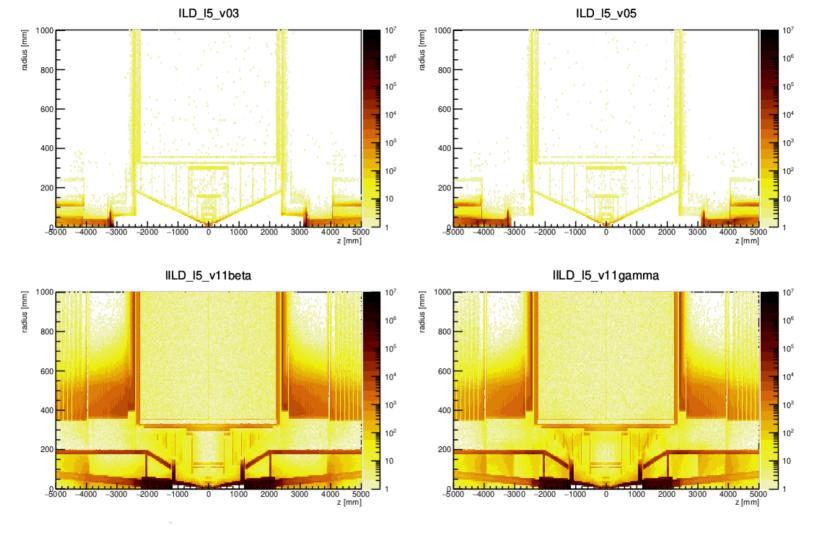
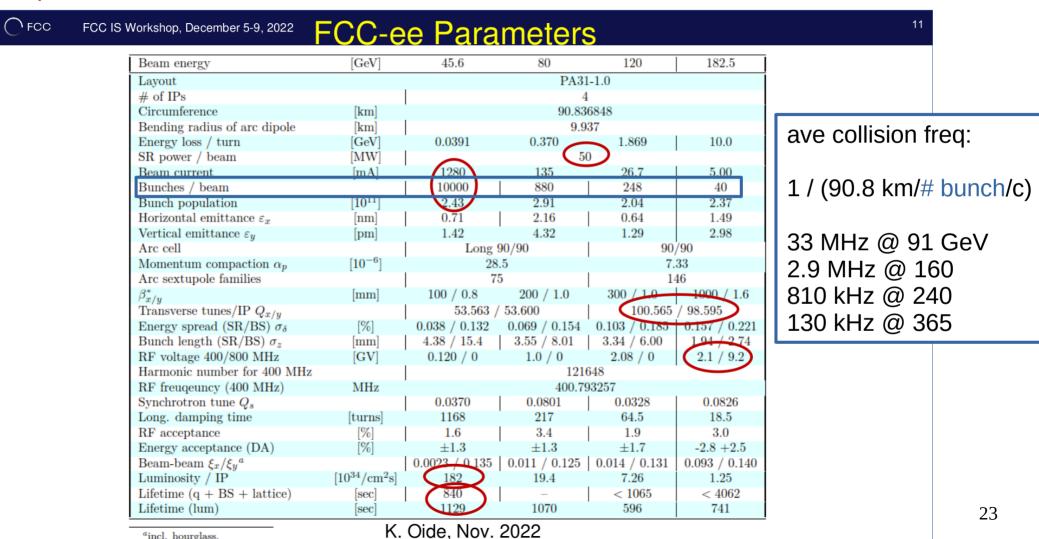



Figure 6: Pair background at FCCee-91 in different models: distribution in radius and z of the endpoint of all MC particles.

https://indico.cern.ch/event/1203316/timetable/#5-fcc-accelerator-status-and-r

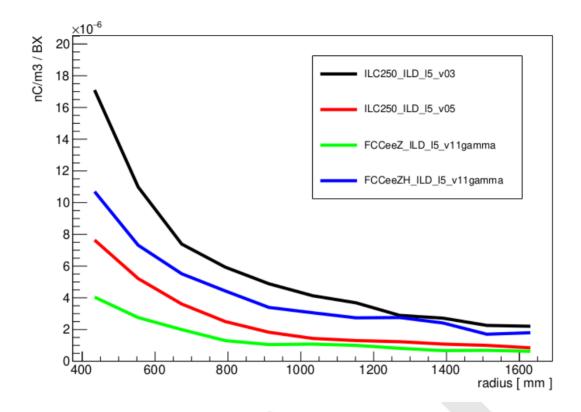


Figure 8: Radial dependence of the primary ion charge density induced by beamstrahlung in a single BX in the realistic collider/detector combinations.

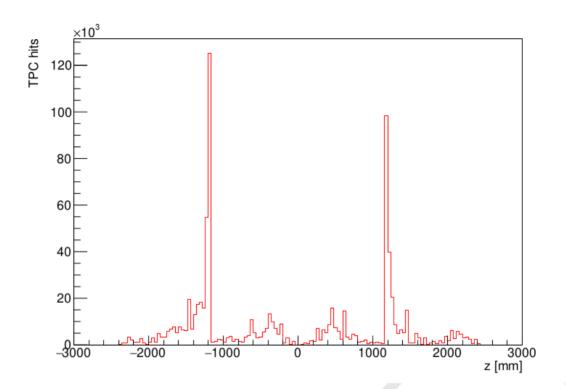


Figure 9: Distribution in z of the position of the first simulated interaction which gave rise to a TPC hit. ILD_ $15_v11\gamma$ detector model, 100 BX of pair background at FCCee-91.

			FCCee-91	FCCee-240	ILC-250
model	B-field [T]	MDI	thous	and ions / bund	ch crossing
				mean \pm RM	1S
ILD_15_v02	3.5 (uniform)	ILC	6.5 ± 19.9	14 ± 14	960 ± 150
ILD_15_v02_2T	2.0 (uniform)	ILC	6.9 ± 11.1	15 ± 11	4700 ± 300
ILD_15_v03	3.5 (map)	ILC	5.7 ± 7.9	14 ± 11	1100 ± 200
ILD_15_v05	3.5 (map, anti-DID)	ILC	0.6 ± 1.5	3.7 ± 9.7	450 ± 110
ILD_15_v11β	2.0 (uniform)	FCCee	390 ± 120	1000 ± 170	110000 ± 2400
ILD_15_v11γ	2.0 (map)	FCCee	270 ± 100	800 ± 140	100000 ± 1900
	removing E	BeamCal's	graphite lay	er	
ILD_15_v03	3.5 (map)	ILC			1300 ± 170
ILD_15_v05	3.5 (map, anti-DID)	ILC			590 ± 120
			bunch crossing frequency		
			30 MHz	800 kHz	6.6 kHz

~20% effect

imagine we could use ILC-MDI at FCCee-91

(completely unrealistic...)

"best case"

Collider	FCCee-91	FCCee-240	ILC-250	FCCe
Detector model	ILD_15_v11γ	ILD_15_v11γ	ILD_15_v05	ILD_I
average BX frequency	30 MHz	800 kHz	6.6 kHz	30 Mł
primary ions / BX	270 k	800 k	450 k	0.6 k
primary ions in TPC at any time	1.8×10^{12}	1.4×10^{11}	6.5×10^{8}	4 x 10
average primary ion charge density nC/m ³	6.8	0.54	0.0025	0.015

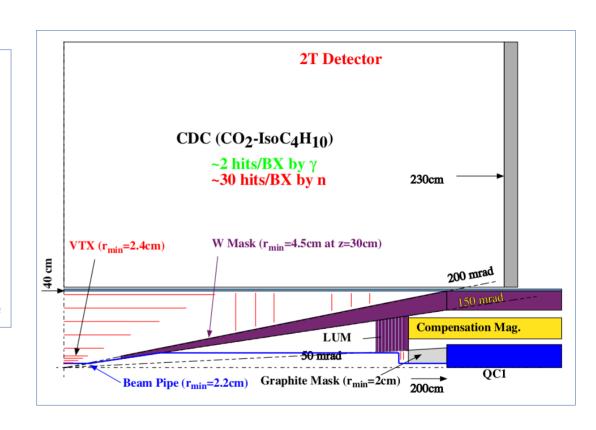
FCCee-91 ILD_I5_v05 30 MHz 0.6 k 4 x 10⁹ 0.015

https://www-jlc.kek.jp/~sugimoto/jlc/ir/lcws2k.pdf

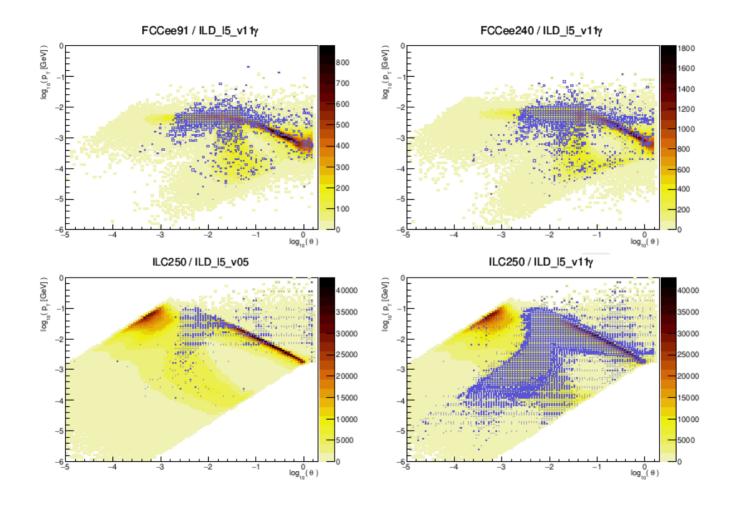
New JLC Mask System at B=3T

Y. Sugimoto

KEK


@LCWS2000

Contents:


Pair background hits in JLC detector models

--- 2T,
$$3T(1^*=2m)$$
, $3T(1^*=4.3m)$

- Beam background from disrupt beam
 - --- Preliminary design of the beam extraction line

include a "W mask"?

