Why JER and τ reconstruction are essential for physics program at $V_{s}=250 \mathrm{GeV}$

Colleagues from IJCLAB and ALERGO project, at FCC-France meeting Oct. 2023
" JER and BMR not important at 250 GeV center of mass"

$$
\sqrt{\mathbf{s}}=250 \mathrm{GeV}
$$

$$
\begin{aligned}
& \frac{\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{ZZ})}{\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{ZH})} \approx 6 \\
& \frac{\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{WW})}{\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{ZZ})} \approx 16
\end{aligned}
$$

$$
\frac{\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{WW})}{\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{ZH})} \approx 100
$$

Tagging the bosons

Physics processes at LC/FCC/CEPC

Multi bosons
 ZH WW
 ZZ
 ZHH
 ZZZ ZWW

Multifermions + Boson(s)
$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{H}, \mathrm{e}+\mathrm{e}-\mathrm{Z}$
$v \nu \mathrm{H}, ~ v \nu \mathrm{Z}$
ttH
e v W
$v v$ WW, $v v$ ZZ
ttbar

Z to	Fraction
$\ell^{+} \ell^{-}$	10%
qq (jets)	70%

\mathbf{W} to	Fraction
$\ell^{ \pm} v$	32%
q^{\prime} (jets)	68%

H to	Fraction
$\ell^{+} \ell^{-}$	$<15 \%$
$q q(j e t s), W W, Z Z$	$>85 \%$

Optimal use of the luminosity needs to reconstruct and tag the bosons through their hadronic decays

ZH final state at 250 GeV centre of mass energy

Which energy for the jets ?

- Standard Higgs boson couplings measurement
i.e. for example measurement Higgs to qqbar \qquad
- Exotic Higgs boson decays see next slide

Higgs Boson exotic decays mode

Higgs Decay mode	95% CL limit on BR		
	LHC	HL-LHC	CEPC
$E_{\mathrm{T}}^{\text {miss }}$	0.23	0.056	0.030
$(b \bar{b})+E_{\mathrm{T}}^{\text {miss }}$	-	$[0.2]$	1×10^{-4}
$(j j)+E_{\mathrm{T}}^{\text {miss }}$	-	-	4×10^{-4}
$\left(\tau^{+} \tau^{-}\right)+E_{\mathrm{T}}^{\text {miss }}$	-	$[1]$	8×10^{-5}
$b \bar{b}+E_{\mathrm{T}}^{\text {miss }}$	-	$[0.2]$	2×10^{-4}
$j j+E_{\mathrm{T}}^{\text {miss }}$	-	-	5×10^{-4}
$\tau^{+} \tau^{-}+E_{\mathrm{T}}^{\text {miss }}$	-	-	8×10^{-5}
$(b \bar{b})(b \bar{b})$	1.7	(0.2)	6×10^{-4}
$(\bar{x})(c \bar{c})$	-	(0.2)	8×10^{-4}
$(j j)(j j)$	-	$[0.1]$	2×10^{-3}
$(b \bar{b})\left(\tau^{+} \tau^{-}\right)$	$[0.1]$	$[0.15]$	4×10^{-4}
$\left(\tau^{+} \tau^{-}\right)\left(\tau^{+} \tau^{-}\right)$	$[1.2]$	$[0.2 \sim 0.4]$	2×10^{-4}
$(j j)(\gamma \gamma)$	-	$[0.01]$	1×10^{-4}
$(\gamma \gamma)(\gamma \gamma)$	$\left[7 \times 10^{-2}\right]$	4×10^{-4}	8×10^{-5}

JER \& $\mathrm{E}_{\mathrm{T}}{ }^{\text {mis }}$

Dijets mass

Importance of the dijets mass resolution For measuring Higgs \rightarrow invisible

ZZ versus ZH

$Z Z \rightarrow q q v$
And
ZH \rightarrow qq H ($\mathrm{H} \rightarrow$ invisible)

Obvious effect due to BMR, but

Need to quantify the effect on the precision on BR (Higgs to invisible)

Higgs Measurement at $V_{s}=350 \mathrm{GeV}$

From T.Barklow (SLAC)

$$
\begin{aligned}
e^{+} e^{-} & \rightarrow Z H \\
& \rightarrow q q b \bar{b} \\
\sqrt{s}= & 350 \mathrm{GeV}
\end{aligned}
$$

From Thesis Jonas Kunath (IPP) - 2022
It is essential also at $\sqrt{s}=250 \mathrm{GeV}$ to extract all the BRs of the Higgs But the curve remains to be done

$$
L=500 \mathrm{fb}^{-1} \quad \Delta M_{h}(\mathrm{MeV})
$$

WHY it wa not done?
Jonas used GEANT4 and PANDORA It is not easy to do this type of curve

Higgs Measurement at $V_{\mathrm{s}}=500 \mathrm{GeV}$

Signal significance at $\sqrt{s}=500 \mathrm{GeV}$ for $e^{+} e^{-} \rightarrow Z H H \rightarrow q \bar{q} b \bar{b} b \bar{b}$
C. Castanier et al. hep-ex/0101028
\sum_{i}^{2}

Higgs Measurement at $V_{s}=250 \mathrm{GeV}$

BMR: impact on critical measurements

/16/2024

ILD meeting@CERN

CEPC TDR

Proposed method

(not perfect but not unreasonable)

- Use the charged track(s) with momentum above $150 \mathrm{MeV} / \mathrm{C}$
- Use photon(s) with energy> $200 \mathrm{MeV} / \mathrm{c}$ and at distance> 2 cm from extrapolated charged at the CALO. Entrance
- Use neutral hadron(s) with energy >500 MeV/c and distance> 15 cm from extrapolated charged at the HCAL entrance
- Reconstruct the jets with particle(s) defined above, using jet algo (i.e. DURHAM)
- Smear the energy of the jet(s) using MC jet energy
- Do the analysis, each smearing give the different points to quantify the JER dependence of the analysis

This Fast simulation would give performances closer to PANDORA whatever the jets multiplicity and jets energy It is a good way to take into account for confusion term , contrary to DELPHES which downgrade performance of ILD, At least at high energy or for large jets multiplicity events. Volunteers to put in SGV ?

In red, the parameters which has to be verified by Test beam data analysis or at least by full sim and rec

Just to finish with jets....

2 reminders for peoples asking for relevant questions,
but already treated in the past analysis for ILC

It is due to semi-leptonics decays of the heavy quarks (QCD and therefore fragmentation don't care about quarks family)

A basic method consist to disentangle jet with or without a lepton inside* (at $1^{\text {st }}$ order, but it can refined using PT lepton versus jets direction)

Create 2 samples
> No SL decays
$>$ At least one lepton indicating SL decays
The tail on BMR will be the same for Higgs or Z
Conclusion: the separations between H and Z remains unchanged As soon as you create 2 samples, but the JER keep its importance

[^0]
Longitudinal segmentation for PFA

100 GeV jets
Resolution move from 3% to 4% when going from 26 layers to 10 layers

- Silicon-Tugnsten and AHCAL or SDHCAL :
- just a question of cost (large Radius and 26 layers give a cost about CMS ECAL)
- 25 layers $D E / E$ up by 11%
- 20 Layers DE/E up by 26%
- 10-15 layers (LAr for FCCee ?) ...

Using and analysing events with τ lepton(s),

the capability of the detectors comes together with the JER

$\mathbf{T}^{ \pm}$as a polarisation analyser

\rightarrow Need to reconstruct photon(s) in dense environment....

CONCLUSIONS

- The different cross sections of multi-bosons is clearly telling the JER importance
- The study to quantify JER importance on physics perf. remains to be done at $250 \mathrm{Ge} / \mathrm{C}$ (could be done for at least the ILD-list of benchmarks processes)
- In order to do these curves which quantify the JER importance, A proposal is made for a Fast Simulation much closer to PANDORA perf. (and so adapted to ILD) than DELPHES adapted to calorimeter a la CMS crystal (like the CMS flow) or IDEA
- However, I have no doubt about it, due to the JER importance at 350 GeV
- Tau reconstruction and JER at twin parameters for a detector using PFA
- Longitudinal segmentation remains the key parameter for the performances

BACKUP

Model validation

Jet energy resolution

Surprisingly well reproduced with Delphes (very simplified) Particle Flow
Calorimeter granularity and energy response thresholds important!

ILD IDR Fig. $8.3 \mathrm{~d}(Z \rightarrow q \bar{q})$

Delphes simulation tests

45 GeV
3.5\%

Goes to 4.5 \%

Model validation

Jet energy resolution

Surprisingly well reproduced with Delphes (very simplified) Particle Flow
Calorimeter granularity and energy response thresholds important!

DeLPHES simulation final implementation

Much better
But 3.5 to 3.8%, almost OK
But
threshold at 0.1 GeV on photon Not realistic or must include Debris of pion fragments Like CEPC Fast Sim.

Worth on the threshold On Neutral Hadron at 0.25 GeV

Artificial adjustment

For low-medium energy

Higgs production at 250 GeV first checks, July 2020

Comparison of new Delphes model to SGV and full simulation results for

$$
e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} q \bar{q}
$$

Almost perfect agreement...

Plots prepared by Jenny List

Example results

Higgs production at 250 GeV first checks, July 2020

Comparison of new Delphes model to SGV and full simulation results for

$$
e^{+} e^{-} \rightarrow Z H \rightarrow \mu^{+} \mu^{-} q \bar{q}
$$

Almost perfect agreement...

To some extend , SVG better than DELPHES

Plots prepared by Jenny List

CP angle analyser

[^0]: * The importance of e, μ ID capability IN JET is clearly for that type of situation

