
1

Workflow training (PyTorch) & inference (iLCSoft/Marlin)
• run PV & SV finder, jet clustering and vertex refinement of LCFIPlus
• run Marlin processor that calculates and stores features needed for the flavor taggers

• store variables in root files with four trees
(charged, neutral, jets, sv)

Training (python scripts & PyTorch):

• convert trees in root files to pandas dataframes, do
some checks and cleaning, store dataframes in hdf5-
files

• do further pre-processing and training in PyTorch
• use torch library to convert trained model into

model that can be used in C++

Inference (iLCSoftMarlin)

• store variables via PIDHandler (not optimal in
terms of memory, might be changed)

• run Marlin processor for tagging with ParticleNet
Model

- read feature values from PIDHandler
- store them in the vectors needed by the

ParticleNet Model (coordinates of const.,
features of the const., coordinates of SV,
features of SV)

- convert vectors to torch tensors and do the
pre-processing

- do the inference with the converted model
- store output again using PIDHandler

• run Marlin processor to store outputs in trees and
histogram that can be used to calculate ROCs etc.

} iLCSoft/Marlin

} iLCSoft/Marlin

Δη, ΔΦ
log(pT), log(E), log(pT/pTjet), log(E/Ejet),
track jet/pjet
ΔR
q
isElectron, isMuon, isChargedHadron,
isNeutralHadron, isPhoton
impact parameter & significances
track used in PV?
lepton related variables
pid variables
EHCAL/EHCAL+ECAL

χ2/ndf

⃗p

· ⃗p

Δη, ΔΦ

2

ParticleNet: input features

Δη, ΔΦ

jet constituents: coordinates secondary vertices: coordinates

2 SVs & all jet constituents
considered, no ordering of inputs

jet constituents: features

28 input features

secondary vertices: features
Δη, ΔΦ
log(pT), ESV/Ejet, ESV

η
mSV

Ntracks in SV

χ2/ndf
impact parameters &significances
cos(flight directionSV, SV) ⃗p

14 input features

ptrack/pjet, pTtrack (rel. jet), track jet/pjet
ΔR(track, jet)
impact parameter & significances
track reconstructed in PV?
lepton related variables
pid variables
χ2/ndf

⃗p · ⃗p

3

DeepJet: input features

pjet, pTjet,
Ncharged jet const., Nneutral jet const., NSV

additional global variables from LCFIPlus

global variables

21 input features

charged jet constituents

19 input features

pneutral const., pneutral const./pjet
ΔR(jet, neutral const.)
is photon?

EHCAL/EHCAL+ECAL

neutral jet constituents

5 input features

mSV

Ntracks in SV
ΔR(SV, jet)
ESV/Ejet, ESV

cos(flight directionSV, SV)
3D IP and significance
χ2, ndf

⃗p

secondary vertices

10 input features

Pu
sh

in
g

th
e

lim
it

of
 je

t t
ag

gi
ng

 w
ith

 G
N

N
s

- J
ul

y
7,

 2
02

1
- H

ui
lin

 Q
u

(C
ER

N
)

RECAP: PARTICLENET
ParticleNet

jet treated as a permutation-invariant point cloud

customized graph neural network architecture for jet tagging based on
Dynamic Graph CNN [Y. Wang et al., arXiv:1801.07829]

Key building block: EdgeConv

treating a point cloud as a graph: each point is a vertex

for each point, a local patch is defined by finding its k-nearest neighbors

designing a permutation-invariant “convolution” function

learn an “edge feature” for each center-neighbor pair: eij = MLP(xi, xj)

same MLP for all neighbor points, and all center points, for symmetry

aggregate the edge features in a symmetric way: xi’ = eij

EdgeConv can be stacked to form a deep network

learning both local and global structures, in a hierarchical way

meanj

4

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

Ed
ge

Co
nv

 b
lo

ck

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Pa
rt

ic
le

N
et

 a
rc

hi
te

ct
ur

e

4

ParticleNet

• treat jet as „particle cloud“
• input: jet constituents
key building block: edge convolution
• particle cloud: graph, each point: vertex,

connections between each point & k nearest
neighboring points: edges

• learn an „edge feature“ for each pair:

• MLP: parameters shared among all edges
• aggregation of edge features:

4

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

(a) ParticleNet

coordinates features

EdgeConv Block
k = 7, C = (32, 32, 32)

EdgeConv Block
k = 7, C = (64, 64, 64)

Global Average Pooling

Fully Connected
128, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

(b) ParticleNet-Lite

FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector

Pu
sh

in
g

th
e

lim
it

of
 je

t t
ag

gi
ng

 w
ith

 G
N

N
s

- J
ul

y
7,

 2
02

1
- H

ui
lin

 Q
u

(C
ER

N
)

RECAP: PARTICLENET
ParticleNet

jet treated as a permutation-invariant point cloud

customized graph neural network architecture for jet tagging based on
Dynamic Graph CNN [Y. Wang et al., arXiv:1801.07829]

Key building block: EdgeConv

treating a point cloud as a graph: each point is a vertex

for each point, a local patch is defined by finding its k-nearest neighbors

designing a permutation-invariant “convolution” function

learn an “edge feature” for each center-neighbor pair: eij = MLP(xi, xj)

same MLP for all neighbor points, and all center points, for symmetry

aggregate the edge features in a symmetric way: xi’ = eij

EdgeConv can be stacked to form a deep network

learning both local and global structures, in a hierarchical way

meanj

4

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

Ed
ge

Co
nv

 b
lo

ck

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Pa
rt

ic
le

N
et

 a
rc

hi
te

ct
ur

e

Pu
sh

in
g

th
e

lim
it

of
 je

t t
ag

gi
ng

 w
ith

 G
N

N
s

- J
ul

y
7,

 2
02

1
- H

ui
lin

 Q
u

(C
ER

N
)

RECAP: PARTICLENET
ParticleNet

jet treated as a permutation-invariant point cloud

customized graph neural network architecture for jet tagging based on
Dynamic Graph CNN [Y. Wang et al., arXiv:1801.07829]

Key building block: EdgeConv

treating a point cloud as a graph: each point is a vertex

for each point, a local patch is defined by finding its k-nearest neighbors

designing a permutation-invariant “convolution” function

learn an “edge feature” for each center-neighbor pair: eij = MLP(xi, xj)

same MLP for all neighbor points, and all center points, for symmetry

aggregate the edge features in a symmetric way: xi’ = eij

EdgeConv can be stacked to form a deep network

learning both local and global structures, in a hierarchical way

meanj

4

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

Ed
ge

Co
nv

 b
lo

ck

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Pa
rt

ic
le

N
et

 a
rc

hi
te

ct
ur

e

arXiv:1902.08570, Pushing the Limit of Jet
Tagging With Graph Neural Networks, Huilin
Qu, talk at ML4Jets2021, July 7, 2021 4

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

FIG. 1: The structure of the EdgeConv block.

ber of channels C = (C1, C2, C3), corresponding to the
number of units in each linear transformation layer.

The ParticleNet architecture used in this paper is
shown in Fig. 2a. It consists of three EdgeConv blocks.
The first EdgeConv block uses the spatial coordinates
of the particles in the pseudorapidity-azimuth space to
compute the distances, while the subsequent blocks use
the learned feature vectors as coordinates. The number
of nearest neighbors k is 16 for all three blocks, and the
number of channels C for each EdgeConv block is (64, 64,
64), (128, 128, 128), and (256, 256, 256), respectively. Af-
ter the EdgeConv blocks, a channel-wise global average
pooling operation is applied to aggregate the learned fea-
tures over all particles in the cloud. This is followed by
a fully connected layer with 256 units and the ReLU ac-
tivation. A dropout layer [68] with a drop probability of
0.1 is included to prevent overfitting. A fully connected
layer with two units, followed by a softmax function, is
used to generate the output for the binary classification
task.

A similar network with reduced complexity is also in-
vestigated. Compared to the baseline ParticleNet archi-
tecture, only two EdgeConv blocks are used, with the
number of nearest neighbors k reduced to 7 and the
number of channels C reduced to (32, 32, 32) and (64,
64, 64) for the two blocks, respectively. The number of
units in the fully connected layer after pooling is also
lowered to 128. This simplified architecture is denoted
as “ParticleNet-Lite” and is illustrated in Fig. 2b. The
number of arithmetic operations is reduced by almost an
order of magnitude in ParticleNet-Lite, making it more
suitable when computational resources are limited.

The networks are implemented with Apache MXNet
[69], and the training is performed on a single Nvidia
GTX 1080 Ti graphics card (GPU). A batch size of 384
(1024) is used for the ParticleNet (ParticleNet-Lite) ar-
chitecture due to GPU memory constraint. TheAdamW

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

(a) ParticleNet

coordinates features

EdgeConv Block
k = 7, C = (32, 32, 32)

EdgeConv Block
k = 7, C = (64, 64, 64)

Global Average Pooling

Fully Connected
128, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

(b) ParticleNet-Lite

FIG. 2: The architectures of the ParticleNet and the
ParticleNet-Lite networks.

optimizer [70], with a weight decay of 0.0001, is used to
minimize the cross entropy loss. The one-cycle learning
rate (LR) schedule [71] is adopted in the training, with
the LR selected following the LR range test described in
Ref. [71], and slightly tuned afterward with a few trial
trainings. The training of ParticleNet (ParticleNet-Lite)
network uses an initial LR of 3⇥ 10�4 (5⇥ 10�4), rising
to the peak LR of 3 ⇥ 10�3 (5 ⇥ 10�3) linearly in eight
epochs and then decreasing to the initial LR linearly in
another eight epochs. This is followed by a cooldown
phase of four epochs which gradually reduces the LR to
5 ⇥ 10�7 (1 ⇥ 10�6) for better convergence. A snapshot
of the model is saved at the end of each epoch, and the
model snapshot showing the best accuracy on the valida-
tion dataset is selected for the final evaluation.

IV. RESULTS

The performance of the ParticleNet architecture is
evaluated on two representative jet tagging tasks: top
tagging and quark-gluon tagging. In this section, we
show the benchmark results.

A. Top tagging

Top tagging, i.e., identifying jets originating from
hadronically decaying top quarks, is commonly used in
searches for new physics at the LHC. We evaluate the
performance of the ParticleNet architecture on this task
using the top tagging dataset [72], which is an exten-
sion of the dataset used in Ref. [46] with some modifica-
tions. Jets in this dataset are generated with Pythia8
[73] and passed through Delphes [74] for fast detector

ParticleNet edge convolution

5

DeepJet: architecture

Charged (19 features) x 10

Neutral (5 features) x 10

SVs (10 features) x 2

Global variables (21 features)

1x1 conv. 64/32/32/8

1x1 conv. 32/16/4

1x1 conv. 64/32/32/8

RNN (LSTM) 150
Fully

connected
200 nodes x1,
100 nodes x7

b
c

light
RNN (LSTM) 50

RNN (LSTM) 50

• classify jets into three classes: b jets, c jets & light jets
• ordering of input particles by (as applied in CMS)

- impact parameter significance for charged jet constituents
- shortest angular distance to a secondary vertex (by momentum if there is no

secondary vertex) for neutral jet constituents
- flight distance significance for secondary vertices

