

ILD-TPC with pixel readout - simulation and reconstruction status

Jan Klamka University of Warsaw

jan.klamka@fuw.edu.pl

Motivation

First due to ongoing long-lived particle search analysis

• Standard vs. all-silicon ILD design comparison was part of the analysis

 \rightarrow would be interesting to compare with another design

- Low-p_T region under study in the analysis "missing hits" problem in the pad-based readout had
 a significant impact
 - \rightarrow improvement expected for the **pixel readout**

...turns out not so easy

Technical status

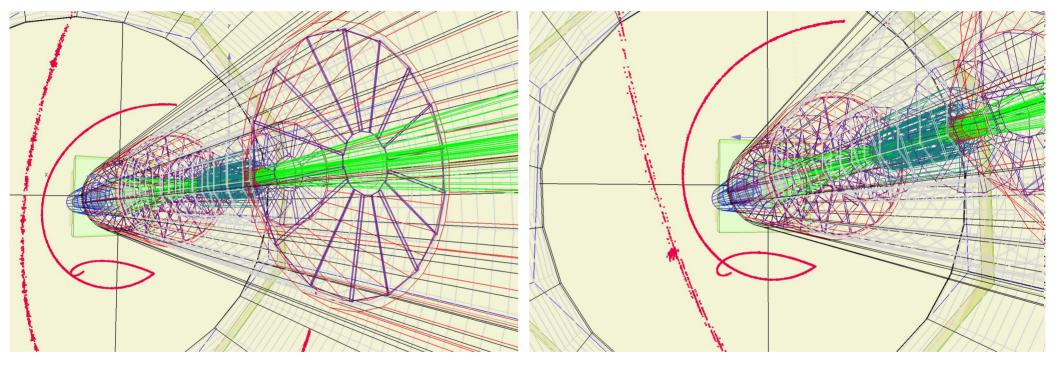
What do we have from Kees Ligtenberg?

- detector models in lcgeo $55~\mu m$ or $990~\mu m$ sensitive volume thickness
- modifications/patches in: DD4hep, KalTest, DDKalTest, MarlinTrk, MarlinTrkProcessors, MarlinUtil, MarlinDD4hep, MarlinReco and also ILDPerformance (for analysis/tests)
- dedicated tracking nested in the Clupatra processor

Technical status

What do we have from Kees Ligtenberg?

- detector models in lcgeo $55~\mu m$ or $990~\mu m$ sensitive volume thickness
- modifications/patches in: DD4hep, KalTest, DDKalTest, MarlinTrk, MarlinTrkProcessors, MarlinUtil, MarlinDD4hep, MarlinReco and also ILDPerformance (for analysis/tests)
- dedicated tracking nested in the Clupatra processor

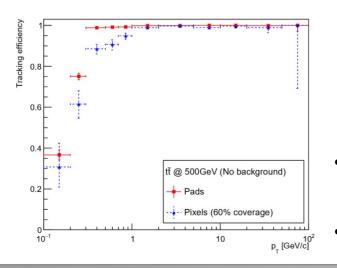

But...

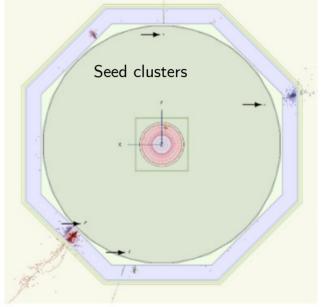
- based on ILCSoft v01-19-02 (?), I only have an archive with the above packages from Peter Kluit
- no documentation, tracking of changes, etc.
 - \rightarrow Managed to run it with ILCSoft v02-02-03 and DD4hep v01-11-02 with Kees' additions
 - \rightarrow Using 55 μm version 990 μm is based on interpolation and gave strange results
 - \rightarrow I rely mostly on stuff left in ILDPerformance (**parsed xml steering files**, some output samples) and the PhD thesis

55 μm sensitive volumes

990 μm sensitive volumes

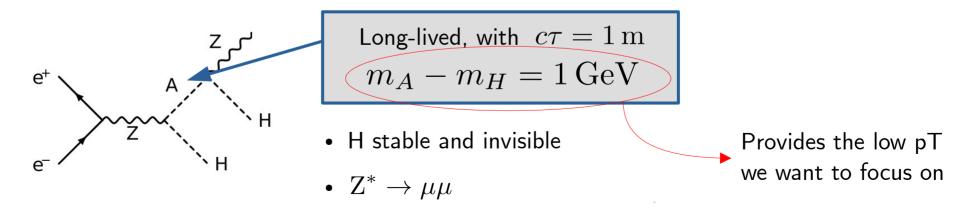
16 January 2024


Jan Klamka, ILD-TPC with pixel readout - reconstruction status

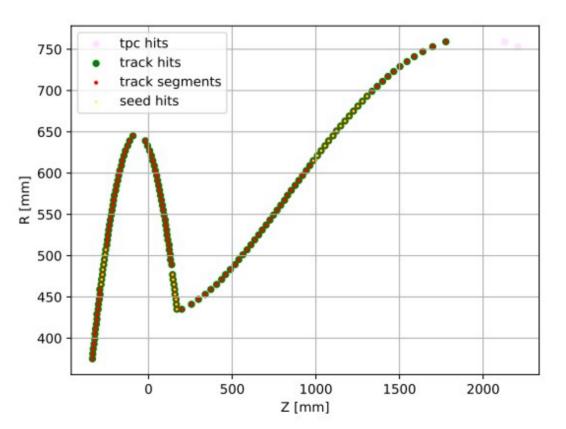

Pattern recognition (KL PhD thesis)

- Seed cluster finding in ranges of pixel rows going inwards
 - \rightarrow Fill hits into bins in Φ angle, take bin with most hits and its neighbours
- Init. track with a straight line through average hit position to the IP
- After additional cuts fit the seed with Kalman filter
 - \rightarrow add and fit more hits going inwards (and outwards if possible)

- "The difference between a pad readout and a pixel readout is almost exclusively due to **differences in the pattern recognition**."
- More focus needed for the lower \mathbf{p}_{T}



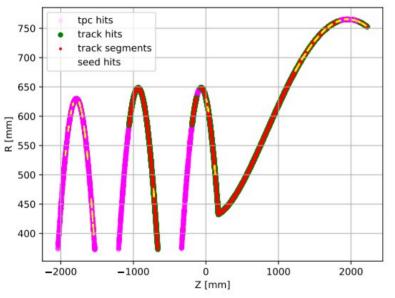
Case study: long-lived particles


- Computation time huge for pixel-TPC event simulation & reco.
- \rightarrow LLP decays serve as a general case and good tradeoff between event complexity and computation time
- We're only interested in tracks inside the TPC anyway

For tests, the same sample as in LLP analysis was used – Inert Doublet Model with very small mass splitting between scalars

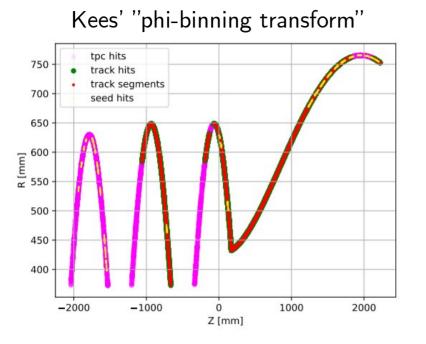
Clupatra algorithm (standard ILD)

- Nearest-neighbour (NN) clustering for seed finding, also in pad row ranges going inwards
- Fit and extend the seeds inwards and backwards using Kalman filter
 → track segments
- Re-cluster in leftover hits and force into clusters based on pad-row multiplicity
- Merge track segments (curlers separately)



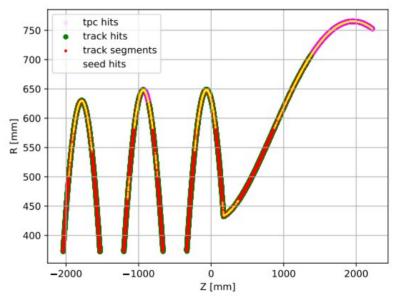
Clupatra + pixel TPC

Kees' "phi-binning transform"


Note: parameters taken from a parsed Marlin xml steering file

- Too many seeds and output tracks
- Problem with extending the seeds

Clupatra + pixel TPC



Note: parameters taken from a parsed Marlin xml steering file

- Too many seeds and output tracks
- Problem with extending the seeds

NN-clustering with the same settings

Based on Clupatra with some necessary technical changes for the pixel. In addition

- decreased errors of initial helix
- if adding hits inward fails, try backwards first
- \rightarrow still too many seeds, they look unclean

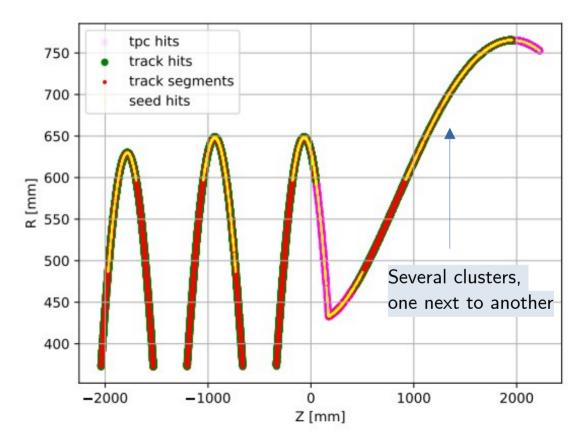
Can we improve?

The main problem: extending the seeds does not work as expected

- Seeds found by NN-clustering seem not very clean / uniform
- Hit density for a track varies more in the pixel-TPC

→ maybe change clustering algorithm?

- HDBScan is a clustering algorithm based on metric that accounts for density/sparsity
- There is an implementation in C++ under MIT license based purely on STL library


Improvement attempt - HDBScan

Seed clusters look cleaner and more robust

However,

- Still too many seeds (due to the problems with extending them)
- Memory-related issues in events with more hits

Summary

- Some effort made to revive the model of ILD design with the TPC readout based on pixels
- Technically challenging, with potential issues related to versions compatibility
- Digitised output using model with 55 μm pixel size seems reasonable
- Improvement needed for tracking

- Tests of tracking performed on events with muons from displaced vertex, as a tradeoff between complexity and computation time
- Results for the approach similar to "standard" don't look repelling, but far from good
- Any input more than welcome