

Focus topics for the ECFA study on Higgs / Top / EW factories

Report from the Focus Groups: ZHang and LUMI experts' groups

I. Bozovic Jelisavcic

VINCA Institute of Nuclear Sciences, Belgrade, Serbia

A detector for a Higgs factory and beyond: ILD

15-17 January 2024, CERN

Outline

Abstract

In order to stimulate new engagement and trigger some concrete studies in areas where further work would be beneficial towards fully understanding the physics potential of a Higgs / Top / Electroweak factory, we propose to define a set of focus topics. The general reasoning and the proposed topics are described in this document.

1. The paper on focus topics for the ECFA study on Higgs / Top / EW factories has been released

(<u>https://cernbox.cern.ch/pdf-viewer/public/D68ojcg6OjMx2K4/ECFA_Focus_Topics.pdf</u>)

2. I'll summarize here the ILD results associated with the focus topics *Zh angular distributions and CP*

studies (ZHang) and the Precision luminosity measurement (LUMI)

3. And also highlight possible work to be done by the ILD

Zh angular distributions and CP studies (ZHang)

Expert Team: Cheng Li, Chris Hays, Gudrid Moortgat-Pick, Ivanka Bozovic, Ken Mimasu, Markus Klute, Sandra Kortner

- **CP-even interactions**: Could ZH angular observables help to increase precision of λ in ZH? (leave to Junping to report in more details)
- CP-odd interactions: Can be probed by reconstructing the Higgs and Z boson production/decay planes (i.e. HZZ in ZZ-fusion at 1 TeV ILC [1]), or by measuring and utilizing the polarizations of the Higgs-boson decay particles (i.e. H to ττ decay at 250 GeV ILC[2])

These CP-odd interactions could provide an ingredient to explain the observed matter-antimatter asymmetry in the universe. Prior analyses of ZH production have found good sensitivity to CP-odd interactions, and a further understanding of this sensitivity is a primary goal of this topic.

Zhang – previous(ongoing) ILC/ILD work

(68% CL, pure scalar)

[Snowmass White Paper: CPV, arXiv:2205.07715v3]

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	10 tmes	250	350	500	1 TeV	$1,\!300$	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	more <i>L</i>	250	350	500	VBF 8 ab ⁻¹	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	1.6 ·10⁻⁵	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$		0.50	\checkmark	_		_			0.06			$< 10^{-2}$
$HZ\gamma$		~ 1	\checkmark				~ 1	_			_	$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	_	_	_	_	_	_	_	_	$< 10^{-2}$
$Ht\bar{t}$	0.24	0.05	\checkmark			0.29	0.08	\checkmark			\checkmark	$< 10^{-2}$
$H \tau \tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06		\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$									_	\checkmark		$< 10^{-2}$

- 1. I. Bozovic, N. Vukasinovic, G. Kacarevic, Probing CPV mixing in the Higgs sector in VBF at 1 TeV ILC, PoS(EPS-HEP2023)404, to be submitted to Phys. Rev. D
- D. Jeans and G. W. Wilson, Measuring the CP state of tau lepton pairs from Higgs decay at the ILC, Phys. Rev. 302 D 98 013007 (2018), <u>arXiv:1804.01241</u>
- 3. Working Group Report: Higgs Boson", in Community Summer Study 2013: Snowmass on the Mississippi. 10, 2013, <u>arXiv:1310.8361</u>

Zhang – potential ILC/ILD studies

Further studies can determine whether there is scope to improve the sensitivity, or to extend it to additional interactions.

PHYSICS ANALYSES

- Other channels in HZ: (inclusive Z decays), H to WW to hadrons (decay)
- Other energies: H to $\tau\tau$ at higher ILC energies
- Analyses refinement: use optimal observable(s) to enhance sensitivity to the Higgs CP structure

THEORY

- Expand interpretation framework connecting SMEFT/angular observables/specific BSM models (to understand the baryon asymmetry)

ALGORITHMS

- Tracking and ID: $\boldsymbol{\tau}$ and jet reconstruction
- Jet charge measurement (quark-antiquark separation in H to VV hadronic decays)

Precision luminosity measurement (LUMI)

Expert Team: Ivanka Bozovic, Mogens Dam, Fulvio Piccinini, Wiesław Płaczek, André Sailer, Maciej Skrzypek, Graham Wilson; Paolo Azzuri, Ayres Freitas, Adrián Irles, Andreas B. Meyer

- Low-angle Bhabha scattering (LABS): Requires dedicated detector at 9<100 mrad; Challenging systematics should be quantified in a full detector simulation including backgrounds in the very forward region. This calls for novel and revised studies (at linear colliders), in line with the evolving design of the MDI region
- **Di-photon production**: Avoids some of the challenges of LABS, in particular the severe metrology requirements and the significant impact of the hadronic vacuum polarization; Central measurement $(|\cos \vartheta| < 0.9)$

Precision of the integrated luminosity is important for all cross-section and line-shape measurements, in particular the Z-pole, so it is crucial to reduce the uncertainty to the one comparable to LEP $(3.4 \cdot 10^{-4})$.

LABS – previous(ongoing) ILC/ILD work

	LEP [131]	FCC-ee (Z pole)	ILC [133], [134]	
			$(\sqrt{s} > 250 \text{ GeV})$	
LumiCal distance from IP [m]	2.5	1.1	2.48	
Precision target	3.4×10^{-4}	10^{-4}	10^{-3}	
Tolerance for				
inner radius [µm]	4.4	$\mathcal{O}(1)$	4	
outer radius [μ m]	?	$\lesssim 3$?	
distance between two LumiCals [μ m]	$\mathcal{O}(100)$	< 100	200	

- (133) A. Stahl, Luminosity measurement via Bhabha scattering: Precision requirements for the luminosity calorimeter, <u>LCDET2005004</u>, Apr 2005 (2005). <u>– a dedicated study on metrology at ILC energies needed</u>
- H. Abramowicz, Forward instrumentation for ILC detectors, Journal of Instrumentation 5 (2010) P12002 (physics background, detector design and performance), <u>arXiv:1009.2433</u>

- I. Bozovic Jelisavcic et al., Luminosity measurement at ILC, JINST 8 (2013) P08012, <u>arXiv:1304.4082</u> (correction of the beam-induced effects)

LUMI – potential ILC/ILD studies

LABS is preferred for the point-to-point lumi control, novel (central) processes to be investigated. Detailed designs for LumiCal detectors are needed for different collider setups and different detector concepts.

SIMULATION STUDIES

- ILD needs detailed metrology study for LABS at all ILC energies
- Di-photon production A detailed study of the luminosity calibration using this process is still lacking and would be very important; Feasibility of angular acceptance precision (50 μm) for centrally reconstructed photons
- Other processes (i.e. di-muon production); Angular acceptance and position resolution of the central tracker

THEORY

- Implementation of radiative fermion pair production in LABS (di-photon) generators
- Implementation of NNLO EW corrections for di-photon production

Focus Topics/ZHang

- ✓ gitlab wiki: <u>https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/</u>
- ✓ sign up for e-group: <u>http://simba3.web.cern.ch/simba3/</u>
- ✓ email the conveners of ECFA WG1 HTE group: <u>mailto:ecfa-whf-wg1-hte-conveners@cern.ch</u>

Focus Topics/LUMI

- ✓ gitlab wiki: <u>https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/LUMI</u>
- ✓ sign up for e-group: <u>http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=ecfa-whf-ft-lumi</u>
- ✓ email the conveners of ECFA WG1 PRECision group: <u>mailto:ecfa-whf-wg1-prec-conveners@cern.ch</u>