ECFA Focus Topic: CKMWW

Uli Einhaus

ILD Meeting "A detector for a Higgs factory and beyond: ILD" 16.01.2024

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

- Use W decays to measure CKM matrix elements $|V_{ij}|$, ~ directly by counting
- Allows for direct, model-independent access to 6 CKM elements (without top)
- Of particular interest: V_{cb} , V_{cs} , (V_{ub})
 - test of unitarity of the CKM matrix
 - V_{cs} for comparison with indirect leptonic charmed meson decays
 - V_{cb} to resolve discrepancy between in- & exclusive determinations via semilep. B decays, controls unitarity triangle normalisation \rightarrow already systematically limited at Belle!
 - V_{ub} as test of lattice QCD needed for results from Belle II
- With 100% reconstruction efficiency: $\delta_{V_{ij}}^{th} = \frac{1}{2} N_{ev}^{-1/2}$

for 108 W:

$W^- \rightarrow$	$\bar{u}d$	$\bar{u}s$	$\bar{u}b$	$\bar{c}d$	$\bar{c}s$	$\overline{c}b$
BR	31.8%	1.7%	4.5×10^{-6}	1.7%	31.7%	$5.9 imes 10^{-4}$
$N_{\rm ev}$	64×10^6	3.4×10^6	900	$3.4 imes 10^6$	63×10^6	118×10^3
$\delta^{ h}_{V_{ij}}$	0.0063~%	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

- Identify quark flavours \rightarrow <u>flavour tagging tools</u>
 - LCFIPlus is well-established standard
 - a number of new taggers based on neural networks (<u>1</u>, <u>2</u>, <u>3</u>, <u>4</u>) are being developed, full integration in key4HEP (hopefully) soon
- b, c-tagging need vertexing, well established tools part of reconstruction chains, profit from new tracking algorithms and hardware developments (ALICE ITS3)
- s-tagging needs PID, likely the reason why ILD and IDEA (with dE/dx / dN/dx) in particular are working on s-tagging, new tool (<u>CPID</u>) being established

- Center of mass energies
 - theshold scan around 160 GeV interesting for W mass, rather low cross section, no contamination from ZZ
 - 250 GeV is default working point for Higgs factory and has a good WW cross section
 - at higher energies lower cross section, but more boost which is probably helpful for vertexbased tagging, but less so for PID, at some point JER worsens
- Typical expected numbers of WW at 250 GeV at ILC and 160 GeV at FCC-ee: O(10⁸)
 - ILC profits from ca. factor 2 due to polaristion
 - multiply with number of detectors for FCC-ee
- FCC-ee MC samples are needed
- ILD MC samples with full sim/reco exist, 250 GeV is ca. 12 ab⁻¹ (exceeds H-20 by >3 in each pol. channel) and good to go, 500 GeV is ca. 0.5 ab⁻¹ and missing some newer reconstruction aspects; might need dedicated samples for V_{ub}

Analysis?

- One analysis being set up by UE
 - use new CPID for particle identification
 - use new neural network tagger (M. Meyer) for flavour tagging
 - use 250 GeV ILD MC production from 2020
 - target: statistical uncertainty on $|V_{ij}|$ including reconstruction efficiencies and backgrounds
 - focus on V_{cs} (impact of PID on s-tagging)
- FCC-ee (IDEA) analysis desired!
- Given huge statistics, study of systematics are vital and can inform detector design decisions!

