

Exploring hidden sectors at future e⁺e⁻ colliders with two angular particle correlations

Emanuela Musumeci (IFIC, Valencia)

in collaboration with A. Irles, R. Pérez-Ramos, I. Corredoira, V. A. Mitsou, E. Sarkisyan-Grinbaum, M.A. Sanchis-Lozano based on 2312.06526

ILD MEETING

16/01/2024

> Powerful method to study the underlying mechanisms of particle production

> Uncover possible collective effects resulting from the high particle densities

Emanuela Musumeci |

The term *Hidden Valley* refers to a wide <u>class of models</u>

7

The term *Hidden Valley* refers to a wide <u>class of models</u>

QCD-like scenario

Communicator: F_V

- mirror partner of the SM charged quarks and leptons
- Charged under G_{SM} and G_V
- Pair-produced
- (Prompt) decays: $F_V \rightarrow fq_V \longrightarrow$ hadrons $\Rightarrow E_V \rightarrow eq_V$

$$P Q_V \to qq_V$$

Emanuela Musumeci |

JHEP 1009:105,2010 L Carloni, T Sjöstrand

QCD-like scenario

Communicator: F_V

- mirror partner of the SM charged quarks and leptons
- Charged under G_{SM} and G_V
- Pair-produced
- (Prompt) decays: $F_V \to fq_V \longrightarrow$ hadrons

 $\Rightarrow E_V \rightarrow eq_V$

 $P Q_V \to qq_V$

Perturbation in conventional QCD cascade and final hadronisation

Signature

anomalies in angular correlations

Emanuela Musumeci |

JHEP 1009:105,2010 L Carloni, T Sjöstrand

SIGNAL VS BACKGROUND

 $\sqrt{s} = 250 \text{ GeV}$

BACKGROUND

i) $q\bar{q}$ production with ISR

11

ii) WW —> 4q

m_{D_V} =	125	GeV
$\alpha_v =$	0.1	

Process	$\sigma_{ m Pythia8} \ [m pb]$
$e^+e^- ightarrow D_v \bar{D}_v$	
$m_{q_v}=0.1~{ m GeV}$	0.13
$m_{q_v} = 10 \text{ GeV}$	0.12
$m_{q_v} = 50 \; { m GeV}$	0.12
$m_{q_v} = 100 \; { m GeV}$	0.12
$e^+e^- \rightarrow q\bar{q}$ with ISR	48
WW ightarrow 4q	7.4

No polarised beam

Emanuela Musumeci |

 $\sqrt{s} = 250 \text{ GeV}$

TOOLS

- Monte Carlo event generator:
 - ➡Pythia8
 - •HepMC output
- Fast detector simulation
 - ➡ SGV 3.0
 - From HepMC files —> LCIO-DST
 - ILD geometry
- Analysis
 - ILCSoft (<u>https://github.com/QQbarAnalysis/QQbarAnalysis</u>)
 - ➡ ROOT (<u>https://github.com/airqui/AFBhq2021</u>)

Emanuela Musumeci

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

<u>CUTS</u>

- No secondary vertices
- ♦ neutral PFOs \leq 22 and charged PFOs \leq 15
- $\Leftrightarrow |\cos\theta_{\gamma_{ISR}}| < 0.5$
- ♦ $E_{\gamma_{ISR}}$ <40 GeV
- ♦ m_{jj} < 130 GeV
- ✤ E_{jet} < 80 GeV</p>

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

<u>CUTS</u>

- No secondary vertices
- neutral PFOs \leq 22 and charged PFOs \leq 15
- $\diamond |\cos\theta_{\gamma_{ISR}}| < 0.5$

♦
$$E_{\gamma_{ISR}}$$
 <40 GeV

♦ m_{jj} < 130 GeV

♦ E_{jet} < 80 GeV

Process	$\sigma_{ m Pythia8} \ [m pb]$	Efficiency [%]	$< N_{\rm ch} >$
$e^+e^- ightarrow D_v ar{D}_v$			
$m_{q_v} = 0.1 \; { m GeV}$	0.13	36	12.4 ± 3.7
$m_{q_v}=10~{ m GeV}$	0.12	36	12.4 ± 3.7
$m_{q_v} = 50 \; { m GeV}$	0.12	42	11.4 ± 3.5
$m_{q_v} = 100 { m ~GeV}$	0.12	42	6.5 ± 2.1
$e^+e^- \to q\bar{q}$ with ISR	48	$\lesssim 0.01$	9.9 ± 3.4
$WW \rightarrow 4q$	7.4	$\lesssim 0.001$	-

14

17

Yield

Pythia8+SGV (ILC detector)

18

Yield

Pythia8+SGV (ILC detector)

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

OUTLOOK AT HIGHER ENERGIES

Process	$\sigma_{\sqrt{s}=500{ m GeV}}$ [pb]	$\sigma_{\sqrt{s}=1{ m TeV}}$ [pb]
	$m_{D_v}=250~{ m GeV}$	$m_{D_v} = 500 \text{ GeV}$
$e^+e^- o D_v \bar{D}_v$	2.4×10^{-2}	4.4×10^{-3}
	$m_{T_v} = 250 { m GeV}$	$m_{T_v} = 500 { m ~GeV}$
$e^+e^- ightarrow T_v ar{T}_v$	$9.5 imes 10^{-2}$	$1.8 imes 10^{-2}$
$e^+e^- ightarrow q ar q$ with ISR	11	2.9
$e^+e^- \rightarrow t\bar{t}$	0.59	0.19
$WW \rightarrow 4q$	3.4	1.3

The analysis of the long-range angular particle correlations can provide valuable insights into the initial state of matter on top of QCD partonic shower

♦ We investigate the *observability of hidden sectors* at future $e^+e^$ colliders with two-particle angular correlations at $\sqrt{s} = 250$ GeV

Our results indicate that the study of angular correlations in multiparticle production could *be useful to uncover* the existence of New Physics

An outlook at $\sqrt{s} = 500$ GeV and $\sqrt{s} = 1$ TeV was performed

Emanuela Musumeci |

Thanks for your attention!

22

Back-up slides

Thrust Axis

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

-0.5 -0.5

0.5

0

Analysis at detector level, Pythia8+SGV

2.5

nvtx1

2

1.5

1

Emanuela Musumeci |

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

<u>CUTS</u>

- No secondary vertices
- ♦ neutral PFOs \leq 22 and charged PFOs \leq 15

Emanuela Musumeci |

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

<u>CUTS</u>

- No secondary vertices
- ♦ neutral PFOs ≤ 22 and charged PFOs ≤ 15
- $\diamond |\cos\theta_{\gamma_{ISR}}| < 0.5$ E most energetic γ_{cand} [GeV] 140 $\& E_{\gamma_{ISR}} < 40 \text{ GeV}$ HV_qv100GeV, N_{total}=239463 SM qq (inc. ISR), N___=9597450 10² 10⁶ 120 10⁵ 100 10⁴ 10 80 -10³ 60 60 10² 40 40 1 10 20 20 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 lcos θ l most energetic γ_{cand} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 lcos θ l most energetic γ_{cand} 0 0 1 0.1

Analysis at detector level, Pythia8+SGV

Analysis at detector level, Pythia8+SGV

 $\sqrt{s} = 250 \text{ GeV}, \mathscr{L} = 2 \text{ ab}^{-1}$

Analysis at detector level, Pythia8+SGV

Analysis at detector level, Pythia8+SGV

27