Optimizing the Higgs self-coupling measurement at ILC with Machine Learning

ILD Concept Group Meeting | 2024/01/16

Bryan Bliewert^{1,2}, Jenny List¹, Julie Munch Torndal^{1,3}, Junping Tian⁴

¹ DESY Hamburg

- ² Technische Universität München
- ³ Universität Hamburg

⁴ University of Tokio

- Intro: The Higgs self-coupling and the ZHH analysis
- > Part I: Jet clustering as a leading source of error
 - Towards a GNN-based jet-clustering algorithm
- Part II: The Matrix-Element-Method (MEM) at ILC
 - Accelerating the MEM using neural importance sampling (NIS)

Conclusion

Intro: The Higgs self-coupling and the ZHH analysis

Higgs self-coupling λ in the Standard Model (SM)

> Higgs-sector in SM after SSB: only one free parameter

$$V(h) = \frac{1}{2}m_H^2 h^2 + \lambda_3 \nu h^3 + \frac{1}{4}\lambda_4 h^4$$
$$\frac{m_H^2}{2\nu^2} = \lambda_3^{SM} = \lambda_4^{SM}$$

> self-coupling λ defines shape of Higgs potential

$$\lambda + \delta \lambda = \frac{m_H^2}{2\nu^2} \pm \frac{\delta m_H}{\nu^2} m_H \approx 0.13 \pm 10^{-3}$$

> sensitive to BSM physics by loop corrections

Measuring the Higgs self-coupling at e+e- colliders

 $\boldsymbol{\gamma}_{\mathrm{e}}$

Η

١H

 $ar{\mathbf{v}}_{\mathrm{e}}$

Η

- *direct access* to λ possible through double-Higgs production
 - Di-Higgs strahlung (dominant < 1 TeV)
 - vector boson fusion (dominant > 1 TeV)

 e^{-}

 e^+

The ZHH analysis: Status

- > extensive projections at ILC with proposed $\sqrt{s} = 500 \text{ GeV} (\text{DESY-Thesis-2016-027})$
- based on ILD detector concept (DBD2013, IDR2020)

- > precision reach after running $4ab^{-1}$ at 500 GeV (HH $\rightarrow b\overline{b}b\overline{b}$ & HH $\rightarrow b\overline{b}W^{\pm}W^{\mp}$)
 - at least 30% precision on λ for any value of λ
 - **20%** precision on λ for $\lambda_{true} = \lambda_{SM}$ expected with state-of-the-art reconstruction tools (kinematic fitting for jet pairing & **hypothesis testing**, flavor tagging)
 - **10%** precision on λ for $\lambda_{true} = \lambda_{SM}$ when combined with additional scenario at 1 TeV

Part I: Jet clustering as a leading source of error

> WIP: investigate Graph-Neural-Networks (GNNs) for improving jet-clustering (next slide)

Supervised jet clustering with GNNs

idea: train a GNN to calculate whether PFOs belong into the same jet with groundtruth given by TrueJet; form "jets" with a separate algorithm

> design decisions:

- permutation invariance built in: for each PFO-PFO-pair, calculate score using cosine similarity
- however, no IR/C-safety enforced in model
- training and hyperparam. optimization in Python, inference possible in Marlin (JetConvProcessor)
- backbone: transformer based architecture

Supervised jet clustering with GNNs

Results: Dijet-mass reconstruction

training on ca. 100.000 full-simulation ZHH-events (400k jets)

Results: Dijet-mass reconstruction

training on ca. 100.000 full-simulation ZHH-events (400k jets)

µµqqH Di-jet mass comparison durham Entries: 10862 Mean: 107.84 Std Dev: 18.26 gnn Entries: 10862 Event fraction Mean: 108.25 Std Dev: 18.25 10 10^{-4} 100 110 120 130 140 90 70 80 150 M_{dijet} [GeV]

Clustering jets from ZZH (never seen by model)

Part II: The Matrix Element Method (MEM) at ILC

The Matrix Element Method (MEM)

> method for calculating event-likelihoods, use cases:

- process discrimination (Neyman-Pearsson lemma)
- parameter estimation (theory parameters; eventually λ)

> goal here: separate ZHH vs. ZZH $\rightarrow \mu^{-}\mu^{+}b\overline{b}b\overline{b}$

 \succ for each event y and process *i* (ZHH, ZZH), solve

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int |M_i(\mathbf{x}, \mathbf{a})|^2 W_i(\mathbf{y} \mid \mathbf{x}) \epsilon_i(\mathbf{x}) d\Phi_n(\mathbf{x})$$

- $M_i(x, a)$ LO matrix element (HELAS-based Physsim, J. Tian)
- $W_i(y|x)$ detector transfer functions: PDF for measuring y given x; fitted from ILD full-simulation
- phase space integration done using VEGAS+

- a : theory parameters; e.g. λ_{HHH}
- $A_i(a)$: signal acceptance
- $\epsilon_i(x)$: detector efficiency

Hypothesis testing with the MEM

MC truth + Matrix Elements (ME) only

> use case: generator-level check

- calculate discriminator just from $M_i(y_{truth})$ and σ_i
- no transfer function
- perfect separation, as expected

Hypothesis testing with the MEM

Hypothesis testing with the MEM: Results

Hypothesis testing with the MEM: Results

Reconstructed data + Full-MEM

- better separation by accounting for detector effects
- > possibly: MEM output as input to other MVA

1.0

0.8

0.6

0.4

0.2

0.0

0.0

TPR

MEM: Limitations and solutions

- > accelerating computation (with VEGAS: ~3min per integration for one parton-jet combo)
 - **Problem:** VEGAS highly-inefficient for non-factorizing integrands
 - Idea: use neural importance sampling (see work by Plehn et al)
 - Implementation:
 - normalizing flow (NFs) learns regions of integrand yielding highest contributions
 - NFs allow learning probability distributions by distorting a "latent distribution" by subsequent transformations (jacobian etc. remain tractable)
 - Status: WIP
- integrating over full parton-jet-combinatorics
- incorporating b-tagging information
- > accounting for detector acceptance

Conclusion

- > Matrix Element Method implemented for S/B-separation in Di-Higgs analysis in $ZHH \rightarrow l\bar{l}b\bar{b}b\bar{b}$
 - promising first results, needs final adjustments and higher speed
- ML-based approaches for increasing speed and performance
 - Graph Neural Networks (GNNs): towards a better jet clustering
 - currently sub-Durham performance,
 - BUT many possibilities for improvement (end-to-end model, binary loss weighted by PFO energies, IRC safety...)
 - Marlin processor available for analysis
 - invertible neural network (INNs) for more efficient importance sampling and faster MEM computation

Thank you!

Backup

Supervised jet clustering with GNNs

- idea: using ML, train a GNN to calculate whether PFOs belong into the same jets based on truth-information (TrueJet) and form clusters with a separate algorithm
- > training (for each event):
 - filter out isolated PFOs (IsolatedLeptons)
 - calculate node embeddings with GNN
 - for each PFO-PFO-pair, calculate an *edge-score* using cosine similarity (→ permutation invariance)

inference: require n jets

- calculate affinity matrix (i.e. all edge scores)
- spectral clustering estimates optimal decision boundaries and groups the PFOs into n clusters

Training loss and performance metrics

GNN hyperparameter optimization

9 GNN parameters automatically optimized (using 5% of all events, i.e. ca. 5000)

Result: 5%-increase of model accuracy to 84%, after full training

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int W_i(\mathbf{y} \mid \mathbf{x}, \mathbf{a}) |M_i(\mathbf{x}, \mathbf{a})|^2 T_i(\mathbf{x}, \mathbf{a}) d\Phi_n$$

$$d\boldsymbol{\Phi}_n = \prod_{i}^{\mu^-,\mu^+,b_1,\overline{b_1},b_2,\overline{b_2}} \frac{d^3\boldsymbol{p}_i}{(2\pi)^3 2E_i}$$

> leptons well measured \rightarrow no integration for μ^-, μ^+

- conservation of four momentum and narrow-widthapproximation
 reduction of integration to 7 dimensions
- > integration variables: Θ_{b1} , ϕ_{b1} , ρ_{b1} , θ_{b1b} , ϕ_{b1b} , ρ_{b2} , Θ_{b2}
- with VEGAS+ and integrand in C++, computation time
 1-2 minutes per process (including setup of integration grid)
- > "hit-or-miss" MC (unphysical integration variables \rightarrow 0)

itn	integral	wgt average	chi2/dof	Q		
1 2	4.2(3.6)e-09 6.7(2.7)e-10	4.2(3.6)e-09 6.9(2.7)e-10	0.00 0.94	1.00 0.33		
3	6.0(2.1)e-10	6.4(1.7)e-10	0.50	0.60		
4	2.69(55)e-10	3.05(52)e-10	1.81	0.14		
5	3.49(58)e-10	3.24(39)e-10	1.44	0.22		
6	2.96(43)e-10	3.12(29)e-10	1.20	0.31		
7	5.0(1.2)e-10	3.23(28)e-10	1.42	0.20		
8	4.78(94)e-10	3.35(27)e-10	1.58	0.14		
9	8.6(2.2)e-10	3.43(27)e-10	2.11	0.03		
10	5.9(1.8)e-10	3.48(26)e-10	2.07	0.03		
result = 3.48(26)e-10 Q = 0.03						

itn	integral	wgt average	chi2/dof	Q		
1	1.58(18)e-09	1.58(18)e-09	0.00	1.00		
2	1.68(19)e-09	1.63(13)e-09	0.13	0.72		
3	1.94(19)e-09	1.72(11)e-09	0.96	0.38		
4	1.91(13)e-09	1.800(82)e-09	1.04	0.37		
5	1.98(27)e-09	1.815(79)e-09	0.88	0.48		
6	2.73(99)e-09	1.821(78)e-09	0.88	0.50		
7	1.78(10)e-09	1.807(62)e-09	0.74	0.61		
[] 8	2.03(17)e-09	1.834(59)e-09	0.86	0.54		
9	1.72(13)e-09	1.816(54)e-09	0.82	0.58		
10 1.813(83)e-09 1.815(45)e-09 0.73 0.68 result = 1.815(45)e-09 Q = 0.68						

MEM results for example ZHH (top) and ZZH (bottom) event

MEM detector transfer functions

- PDF for energies/angles
 between reconstructed
 and parton-level particles
- "conventional approach": fitting transfer functions explicitly
- separate transfer
 functions possible for
 signal/background
 hypothesis

