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All results are preliminary: need to check reproducibility with shuffled events etc. (TBD)



Flavor tagging for Higgs factories

e Jet flavor tagging is essentially important for
Higgs studies (including self coupling)

* LCFIPlus (published 2013)* was long used for
flavor tagging
" b-tag: ~80% eff., 10% c / 1% uds acceptance;
" c-tag: ~50% eff., 10% b / 2% uds acceptance.

* Recently FCCee reported ~10x better
rejection using ParticleNet (GNN)

* To be confirmed with full simulation
(with latest algorithm: Particle Transformer (ParT)

- If good, consider to apply to physics analyses
hopefully with common framework
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Particle Transformer (ParT)

* Transformer: self-attention based algorithm
intensively used for NLP (e.g. chatGPT)

* Weak biasing: possible to train big samples efficiently
(with more learnable weights)
but demanding big training sample for high performance

 ParT is a new Transformer-based architecture for Jet
tagging, published in 202212,

 Surpasses the performance of previous architectures

Ea S||y usable with TTree input and XML steerin g file (b) Particle Attention Block () Class Attention Block

Performance on event categorization (ie. not direct flavor tagging but flavor information is essential for the categorization)
All classes H—sbb H-—scc H-—gg H—4 H—lvgy t—bgg t—blv W —=qd Z—qq

Accuracy  AUC  Rejsop,  Rejsoq,  Rejpoy  Rejgoy Rejggy Rejso0,  Rejog s, Rejzoy,  Rejsoy

PEN 0.772 0.9714 2924 841 75 198 265 197 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204

ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402

ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311 3




Data Used For Investigation

e |LD full simulation:
g = b,c,uds

1. et+e- —qq (at 91 GeV) V = neutrino

(DBD sample used for initial LCFIPlus study)
2. e+ e- — vwvH —vvqgq (at 250 GeV)
(2020 production, process ID: 410001-410006) TEEwoE |®

hutps:/idol.org/10.1140/epic/s10052-022-10609-1 PHYSICAL JOURNAL C
With 1M jets (500k events) each
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Jet flavour tagging for future colliders with fast simulati
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* FCCee fast simulation (Delphes with IDEA detector): S et S 0 i

Abstract Jet flavour identification algorithms are of A2 Randomization . . .
paramount importance to maximise the phy potential of ~ References. . . ... ...
e + e - —_ VV H D — VV q q ( at 2 40 G eV) future collider experiments. This w bes a novel set
of tools allowing for a realistic simulation and reconstruction
of particle level observables th:
jet flavour identification. An a

1 Introduction

o PR . ) . o r on measurements of standard model (SM) parameters
. . . N o
S R . e o b are key objectives of the phy p am of future lepton and
ctor geome e !
| ets events) eac e b been e e metsarementof e
allowing for particle identi- ) . N )
. . . S Cf S ) and charm (¢) quarks, and glu-

coupling [14] and the pr
characterisation of top quark properties, such as the top quark

mation have been implemented. A jet flavour identification
algorithm based on a graph neural network architecture and

mass [15] and its electroweak couplings [16,17] require an
ent reconstruction and identification of hadronic final
states. Being able to efficiently identify the flavour of the par-

tions on the flavour t formance is assessed using e N . " N
ton that initiated the formation of a jet, known as jet flavour

the FCC-ee IDEA detector prototype.

https://link.springer.com/article/10.1140/epj
¢/s10052-022-10609-1

* 80% are used for training, 5% for validation, 15% for test



https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1
https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1

Software for Particle Transformer

* Public in github, with instruction provided

* Input: ROOT files for training (80%), validation (5%), test (15%)

* Input variables can be provided via steering file (XML)
* |nput for each particle (tracks, neutral clusters)
* Input for “interaction” = currently momentum only
* Input for “coordinate” = theta/phi plan wrt. jet axis

e Output: ROOT files including evaluation results (likeness) for test events
* To be analyzed with ROOT or so

* We implemented a processor (inside LCFIPlus) to produce ROOT files for
input as much as compatible to FCCee variables

e Except for PID values, which are not fully implemented
* Easy for testing, but not direct to be used for physics analyses


https://github.com/jet-universe/particle_transformer

Input Variables - Features

*Naming follows FCCee scheme — may not express exact meaning

* Impact Parameter (6):
( pfcand_dxy
pfcand_dz
pfcand_btagSip2dVal
pfcand_btagSip2dSig
pfcand_btagSip3dVval
. pfcand_btagSip3dSig
*d0/z0 and 2D/3D impact
parameters, O for neutrals

» Jet Distance (2):
pfcand_btagletDistVal
{pfcand_btag]etDistSig
*Displacement of tracks from

line passing IP with direction of jet

O for neutrals

* Particle ID (6):

* Track Errors (15):
/" pfcand_dptdpt

( pfcand_isMu
pfcand isEl
pfcand_isChargedHad
9 pfcand_isGamma
pfcand_isNeutralHad

_ pfcand_type <

* Not including strange-tagging related
variables (TOF, dE/dx etc.)
* Simple PID for ILD, not optimal

* Kinematic (4):
[ pfcand_erel_log *Fraction of

pfcand_thetarel the particle energy

pfcand_phirel ~ wrt. jet energy
pfcand_charge (108 is taken)

\ -

pfcand_detadeta
pfcand_dphidphi
pfcand_dxydxy
pfcand_dzdz
pfcand_dxydz
pfcand_dphidxy
pfcand_dlambdadz
pfcand_dxyc
pfcand_dxyctgtheta
pfcand_phic
pfcand_phidz
pfcand_phictgtheta
pfcand_cdz

\_pfcand_cctgtheta

*each element of covariant matrix
O for neutrals 6



ILD vs. FCC — theta/phi distribution

* |LD theta/phi are calculated from
the difference between particle
and jet theta/phi in the frame of
the detector.

* FCC theta/phi are obtained from
relative trace of the particle
compared to the jet.

FCC_pfcand_thetarel FCC_pfcand_phirel

 This can cause some differences
in the interaction of other
parameters in the model.

FCC theta



Input Variables - Interactions

* FCC data uses p (scalar momentum) as interaction:

- pfcand_p

* |LD data contains p,, Py, P, (vector momentum) as interaction:
- pfcand_px

- pfcand_py
- pfcand_pz

e Butit’s possible to transfer ILD’s interaction to FCC’s form for fair comparison:

p = \/mz + py?% + -
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Application of ParT to ILD data
(ILD gqg 91 GeV, 0.8M jets for training)

Mis-id. fraction to b jets
Mis-id. fraction to ¢ jets
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* Jet tagging performance is greatly b tagging efficiency ¢ tagging efficiency
improved by Pa rT immediately- , ILC Simulation - Unsorted Sample - 20 Epochs

b tagging
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* The performance is improved by
4.05 - 9.80 times compared to
LCFIPlus with the same set of data.
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e 20 epochs are taken,
200 epochs do not help improving

o
S

0.0 02 0.4 0.6 0.8 10 © 00 0.2 04 0.6 0.8
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performance but give overtraining b-tag 80% eff. c-tag 50% eff.
Method c-bkg uds-bkg c-bkg uds-bkg
acceptance acceptance acceptance acceptance

LCFIPlus 10% 1% 10% 2%

ParT 1.29% 0.25% 1.02% 0.43%




Training parameters - epochs B

* Run on NVIDIA TITAN RTX (memory: 24 GB)

{20 Epochs: 3 hours
200 Epochs: 30 hours

ROC AUC score
Validation Metric

Average Accuracy
Average Loss

Jet Misidentification Probability
8
[}

* No significant improvement in tagging |
efficiency E * et Tagging Efficiency
20 epochs (ILD gq 91 GeV)

e Both ROC AUC score and Validation Metric
reaches a maximum around 20 epochs.

ILC Simulation - Unsorted Sample - 200 Epochs o LC Simulation - Unsorted Sample - 200 Epochs

b tagging

* Overtraining after 20 epochs.
ROC AUC score

Validation Metric
Average Accuracy
Average Loss

* Hence 20 epochs of training is selected to
avoid overtraining.
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200 epochs (ILD qg 91 GeV)
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Comparison with FCC datal?!

* Trained with same condition as ILD
data for fair comparison. (800k data
size, 20 epochs, etc.)

* FCC data has ~ 3 times the
performance compared to ILD data.

e Possible cause of the difference:
* Particle ID: too pessimistic for ILD

* Definition of some variables
* Theta, phi etc.

ilc_nnqq_withParticlelD 100 ilc_nnqq_withParticlelD
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FCC - 20 Epochs , FCC - 20 Epochs
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e Difference on full and fast sim

* Especially different on
tails of distributions

e Assumed detector resolution (?)

Data Particle | Impact Jet Track | c-bkg b-bkg
ID Parameters | Distance | Errors | acceptance @ | acceptance @
b-tag 80% eff. | c-tag 50% eff.

ILD 1.09%
(vwqq 250 GeV)

FCC 0.35%

11



Effect of different parameters: ILD (vvgqg 250 GeV)

ilc_nngq_withParticlelD ( 2 ) - ilc_nnqq_newval_fixed_20_epochs Plot Particle | Impact Jet Track | c-bkg b-bkg
Index ID Parameters | Distance | Errors | acceptance @ acceptance @
b-tag 80% eff. | c-tag 50% eff.

b tagging b tagging
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(4) o ilc_nnqq_NojetDist
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0.63%
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0.79%

Jet Misidentification Probability

Jet Misidentific

9.69%
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YW .. iconourewe emoved panice i e it rck e ] - e ngq Norackars * Impact parameter gives most significance in affecting

b tapoins . the training performance.

* The other parameters are about the similar
significance (not significant impact).

Jet Misidentification Probability
Jet Misidentification Probability
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Effect of different parameters: FCC pammmaima i aian o

Index ID Parameters | Distance | Errors | acceptance @ acceptance @
FCC - 20 Epochs L b-tag 80% eff. | c-tag 50% eff.

b tagging

0.23% 0.35%
0.47% 0.64%

Jet Misidentification Probability
Jet Misidentification Probability

0.24% 0.35%

0.4 . 0.6 X o X . 04 0.6 0.8
Jet Tagging Efficiency Jet Tagging Efficiency

0.75% 0.80%
0.77% 0.80%

2.64% 1.58%
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» Effect of Impact Parameters also significant.

04 0.6 : X . 0.4 0.6 0.8
Jet Tagging Efficiency Jet Tagging Efficiency

FCC_NoPIDImpPara °

Both Particle ID and Jet Distance give significant
impacts.

b tagging

 Removal of track errors improves performance, could
be a result of too many variables of Track Errors (15)
shifting away the contribution of others. Further
investigation should be conducted.

Jet Misidentification Probability

0.4 0.

0.4 0.6 X . X ..6 0.8
Jet Tagging Efficiency Jet Tagging Efficiency
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ILD (vwqgq 250 GeV) vs. FCC with partial variables

Observations:
1. PID gives significant effect
b-bkg acceptance on FCCee, not ILD
@ c-tag 50% eff. (due to easy PID in ILD)
FCC 2. Track errors are rather
harmful in FCCee
3. Difference on b-tagis
small with only impact
parameters (5), but still
see difference in c-tag
4. (of course) significantly
losing performance without
impact parameter
(but still ~ LCFIPlus)

14

800 kjet for training, 20 epochs

Particle
[»)

Plot




Difference in impact parameters

log(abs(pfcand_dxy)) {pfcand_charge!=0} log(abs(pfcand_dz)) {pfcand_charge!=0}

Dotted — FCCee
Solid — ILD

Red — nnbb
Green — nncc
Blue — nndd

Significant difference
on dz seen
- beam spot smearing?

15



Difference in impact parameters

log(abs(pfcand_dxy)) {pfecand_charge!=0} log(abs(pfcand_dz)) {pfeand_charge!=0}

Std Dew Sid Dew

Dotted — FCCee
Solid — ILD

Red — nnbb
Green — nncc
Blue — nndd

.‘.1‘-””mull.r

log(abs(pfeand_btagSip3dSig)) {pfcand_chargel=0} - : S | g n If | can t d Iff erence

on dz seen

- beam spot smearing?

gt

lag(abs{pfcand_btagJetDistval)) {plcand_charge!=0}
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Potential Improvement: log(abs)

FCC_pfcand_btag)etDistVal (only charged particles) FCC pfcand_dxy (only charged particles) FCC_pfcand_dxydxy (only charged particles)
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log10(abs(pfcand_dxydxy))

-6 -4 -2 0
logl0(abs(pfcand_dxy))

logl0(abs(pfcand_btagjetDistVal))
Jet Distance Impact Parameter Track Errors

 Some example distribution of log(abs) the three parameters

» All very small (largely gathering around 10-2)

Hence log(abs) potentially spreads out the distribution and make it more readable by the architecture

e Can potentially improve the performance?
17



Potential Improvement: log(abs)

Particle
ID

Impact
Parameters

*

*

+log(abs)

+log(abs)

log(abs)

*

*

Jet
Distance

+log(abs)

*

+log(abs)

*
+log(abs)

*

log(abs)

log(abs)

%

Track Errors

+log(abs)

E S
+log(abs)

*

c-bkg
acceptance @
b-tag 80% eff.

0.62%
0.54%

0.79%

0.78%

0.47%

0.82%
0.80%
0.82%

b-bkg
acceptance @
c-tag 50% eff.

FCC_pfcand_dxy (only charged particles)
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logl0(abs(pfcand_dxy))

Impact Parameter

ML prefers “gaussian-like” distribution
Not sensitive to small values
(because of linear weighting)

Track errors or impact parameters should
convert with e.g. log function
- slightly improving performance

(but not much as expected...)
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Use px, py, pz instead of p (Interaction)

b-bkg acceptance
@ c-tag 50% eff.

Track Errors

Jet
Distance

Particle
[»}

Impact
Parameters

0.62% 0.49% 1.14% 1.01%
. 0.54% 0.52% 1.06% 1.00%

+log(abs) +log(abs) +log(abs)

* * * 0.47% 0.50% 1.03% 0.97%
+log(abs)

e |LD (vvgq 250 GeV) data shows that application of px, py, pz has better performance than p.
 However, application of log(abs) of the parameters becomes less significant.

e Can be because that application of px, py, pz changes the way log(abs) interacts with other
parameters.

e Other potential treatments can be investigated.

19



Sample size affects performance (FCCee sample)
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Fec - 20 Epochs Plot Index Particle Impact Jet Track Training c-bkg acceptance | b-bkg acceptance
ID Parameters | Distance | Errors Sample @ b-tag 80% eff. @ c-tag 50% eff.
b tagging .
size

800k 0.23% 0.35%

a4M 0.054% 0.20%
8M

0.4 06
Jet Tagging Efficiency

FCC_4M_20_epochs

b tagging

* Training performance significantly improved with bigger data sample size

* Training sample size change of FCC data:

800k -> 4M : 4 times better performance (b-tagging)

4M -> 8M: 5 times better performance (b-tagging)

b tagging

* This non-linearity of increase in performance should be further
investigated.

* Bigger data size of ILD should be obtained for better performance, as well
as comparison with FCC data for further investigation on its behaviour.

0.4 0.6
Jet Tagging Efficiency
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Fine tuning

Two objectives

* Pretrained with fast sim and fine-tune with full sim

* Pretrained with large central production and fine-tune with
dedicated physics samples in each analysis

b-bkg acceptance @
c-tag 50% eff.

Jet
Distance

Particle
ID

Impact
Parameters

FCC
240 GeV
(8M)

FCC

240 GeV
(8M)

ILD
250 GeV
(800K)

With Fine-
Tuning

No Fine-
Tuning

Similar
theta/phi

Training
Sample

o 1.14% 1.95%

250 GeV
(800K)

o 2.22% 2.01%

250 GeV
(800K)

o 3.79% 1.53%

91 GeV
(80k)

e Use result of 8M FCC data to train ILD 800k data

Improves performance only when setups are similar

Training of same setup (pretrain ILD 91 GeV data with ILD 250 GeV data) gives best
performance

Further investigation should be conducted on how to maximise the outcome for fine-tuning

between different data sets

21



Fine tuning — Training curves

ilc_nnqq_newval_fixed_20_epochs pretrain_ilc_nngq_NoParticlelD

Particle Impact Jet Track Fine- Training Similar
ID Parameters Distance Errors | Tuning Sample theta/
phi?

= ROC AUC score —— ROC AUC score
- Validation Metric 0 | s Validation Metric

FCC ILD
240 GeV 250 GeV
(8m) (800k)

--=- Average Accuracy “| --- Average Accuracy
- Average Loss — Average Loss

10.0 125 15.0 175 20.0
Epochs

FCC ILD

240 GeV 250 GeV
(8m) (800k)

ILD ILD
250GeV 91 GeV
(800K) (80k)

—— ROC AUC score —— ROC AUC score
—— Validation Metric
--=- Average Accuracy
- Average Loss

—— Validation Metric
--- Average Accuracy
- Average Loss

e With fine-tuning, the training is obviously accelerated
for the initial epochs (even for those with worse
eventual performance)

AExTre SEa s — * This is particularly obvious between plots (5) & (6) —

—— Validation Metric —— Validation Metric
21 —-- Average Accuracy “1 === Average Accuracy H 'I H | t' t d t
e g oss =L pkeagahoss Similar simuiation setup data
' ) 100
Epochs
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Things we are working on / plan to do

1. Share the data with FCC people — where to upload?

2. Confirm uncertainty of training and sample
e With individual training of the same sample
* Shuffling training/validation/test samples

3. Optimizing input parameters (transformation of variables etc.)
- should be agreed with FCCee for fair comparison

4. Trying fast simulation of ILD (SGV) and try to use for pretraining
(alternatively prepare 10 M jets with full simulation)

5. Include better particle ID on ILD based on recent PID developments
6. Strange tagging — including ©/K/p separation variables

Preparing inference procedure to be used for physics analyses
(cooperation with software group essential)

8. Try similar but different structure like plain Transformer, Graphormer etc.
23



Summary

Particle Transformer seems very promising in quark flavour tagging.

Its performance can be further improved by adjusting the input parameters.

Bigger data set is required for better training outcomes.
Fine-tuning is effective with the model, but only for similar data setups.
It’s maybe time to start thinking of how to apply to physics analyses.

Its application on other reconstruction algorithms should be explored.

24
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