

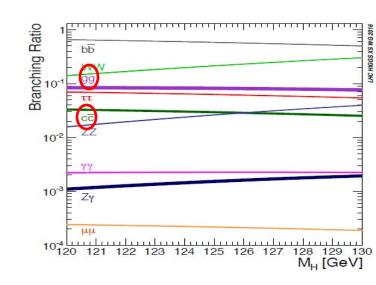
Jet flavor identification for FCCee

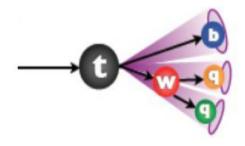
Michele Selvaggi (CERN)

Credits to: Andrea Del Vecchio, Dolores Garcia, Laurent Forthomme, Franco Bedeschi, Michele Selvaggi, Loukas Gouskos [EPJ C 82 646 (2022) link]

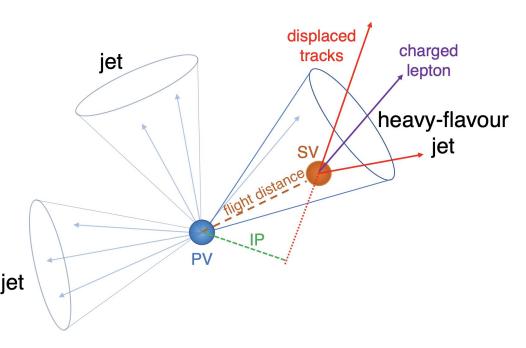
Physics motivation

- Flavour tagging essential for the e⁺e⁻ program, e.g.:
 - Higgs Sector:
 - (HL-)LHC can access 3rd gen. couplings and a few of 2nd generation
 - Future e⁺e⁻: Measure Higgs particle properties and interactions in challenging decay modes
 - E.g. cc, 1st gen quarks/fermions, gg [?]
 - Top quark physics [if E_{CM} sufficient]
 - Precise determination of top properties [mass, width, Yukawa]
 - QCD Physics
 - strong coupling (a_s), event shapes ..
 - modelling of hadronization, MC tuning, ...
 - ...





Basics of flavour tagging (b/c)



Detector constraints:

Need power pixel/tracking detectors

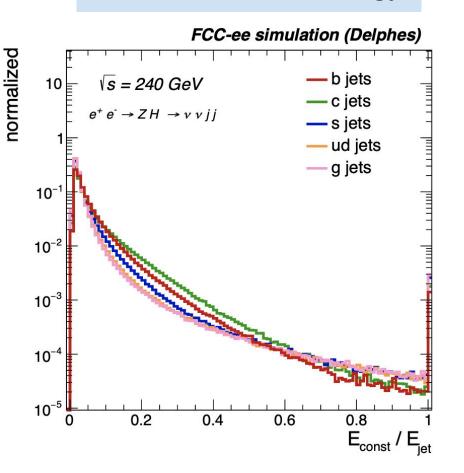
- Good spatial resolution
- As little material as possible
- Precise track alignment

- Large lifetime
 - b (c) lifetime ~1 ps (~0.1ps)
 - b (c) decay length: ~500 μm
 - o (2-3) mm for ~50 GeV boost
- Displaced vertices/tracks
 - Large impact parameters
 - Tertiary vertices when B hadron decays to C hadron
- Large track multiplicity
 - ~5 (~2) charged tracks/decay
- Presence of non-isolated e/μ
 - ~20 (10)% in B (C) decays

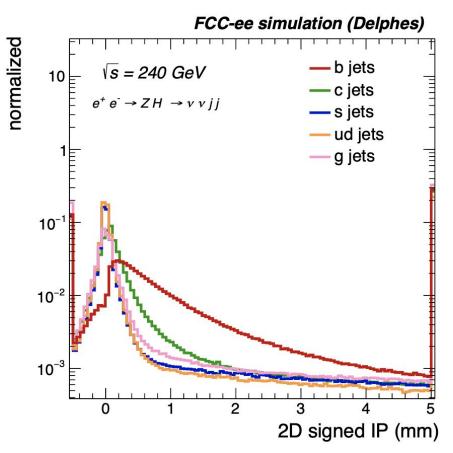
Input variables

Comparison of input distributions for different jet flavors

Constituent relative energy



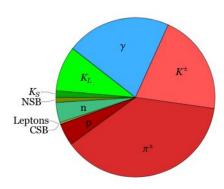
Impact parameter (d₀)

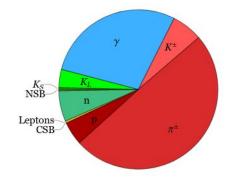


Basics of flavour tagging (strange)

[2003.09517]

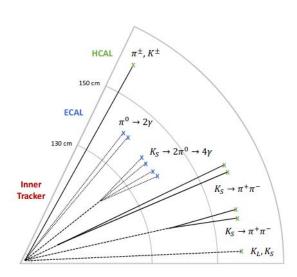
Momentum weighted fraction:





Strange $p_T = 45 \,\text{GeV}$

Down $p_T = 45 \,\mathrm{GeV}$



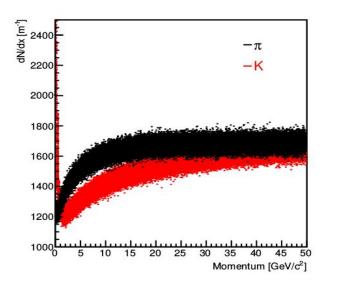
- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - TOF
 - dEdx/dNdx
 - Neutral Kaons:
 - \blacksquare $K_S \rightarrow \pi\pi$
 - Displaced 2 track vertex
 - 4 photons
 - K,
 - TOF vs n?

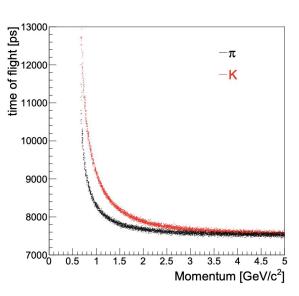
Detector constraints:

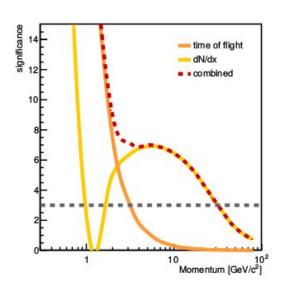
- timing detectors
- charged energy loss (gas/silicon)
- cherenkov detectors

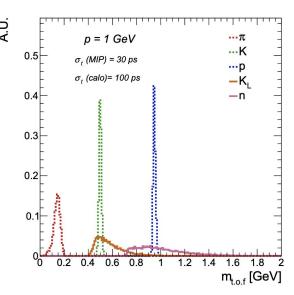
Particle ID: dN/dx and ToF

- Count number of primary ionization clusters along track path
- ToF results in good K/π separation at low-momenta
- Modules added in Delphes









Designing a Graph-based tagger

- **Jet representation:** critical for powerful jet tagging algorithms
 - In theory: A spray of particles produced by the hadronization of q and g
 - Experimentally: A cone of reconstructed particles in the detector
- Reminder: Current and future experiments have / will have a <u>PF-based</u> event reconstruction
 - Output: mutually exclusive list of particles
 - Rich set of info/particle
 - Energy/momentum, position
 - Displacement, particle type
 - timing
 - 0 ...

- [O(50) properties/particle]
 x [~50-100 particles/jet]
 ~O(1000) inputs/jet
- Until recently: Jet taggers based on human-inspired higher-level observables
 - Inputs to cut-based or simple ML-based algorithms
- Move to particle-based jet tagging: i.e. exploit directly the full list of jet constituents (ReconstructedParticles) and new advances in ML

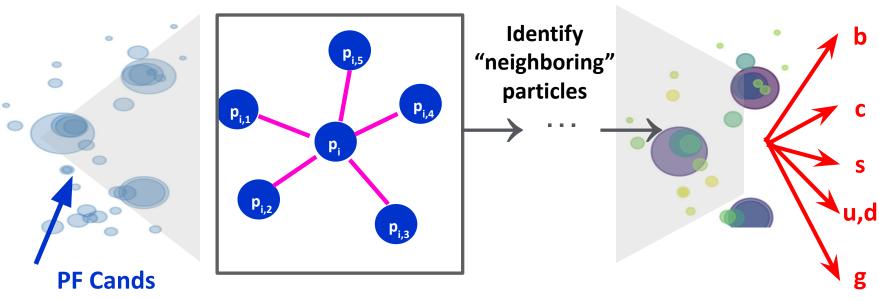
Full list of input variables

Variable	Description					
	Kinematics					
$E_{ m const}/E_{ m jet}$	energy of the jet constituent divided by the jet energy					
$ heta_{ m rel}$	polar angle of the constituent with respect to the jet momentum					
$\phi_{ m rel}$	azimuthal angle of the constituent with respect to the jet momentum					
	Displacement					
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	transverse impact parameter of the track					
d_z	longitudinal impact parameter of the track					
$\mathrm{SIP}_{\mathrm{2D}}$	signed 2D impact parameter of the track					
$ ext{SIP}_{ ext{2D}}/\sigma_{ ext{2D}}$	signed 2D impact parameter significance of the track					
$\mathrm{SIP_{3D}}$	signed 3D impact parameter of the track					
$\mathrm{SIP_{3D}}/\sigma_{\mathrm{3D}}$	signed 3D impact parameter significance of the track					
$d_{ m 3D}$	jet track distance at their point of closest approach					
$d_{ m 3D}/\sigma_{d_{ m 3D}}$	jet track distance significance at their point of closest approach					
$C_{ m ij}$	covariance matrix of the track parameters					
	Identification					
\overline{q}	electric charge of the particle					
$m_{ m t.o.f.}$	mass calculated from time-of-flight					
dN/dx	number of primary ionisation clusters along track					
isMuon	if the particle is identified as a muon					
isElectron	if the particle is identified as an electron					
isPhoton	if the particle is identified as a photon					
isChargedHadron	if the particle is identified as a charged hadron					
isNeutralHadron	sNeutralHadron if the particle is identified as a neutral hadron					

ParticleNet(-ee)

H. Qu and LG PRD 101 056019 (2020) F. Bedeschi, M. Selvaggi, LG EPJ C 82 646 (2022)

- Jet representation: "Point Cloud"→ "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
- Algorithm design: Graph Neural Networks
 - Particle cloud represented as a graph
 - Each particle: node of the graph; Connections between particles: the edges
- Follow a hierarchical learning approach
 - First learn local structures → then move to more global ones



[up to 75/particle]

ParticleNet in FCCSW

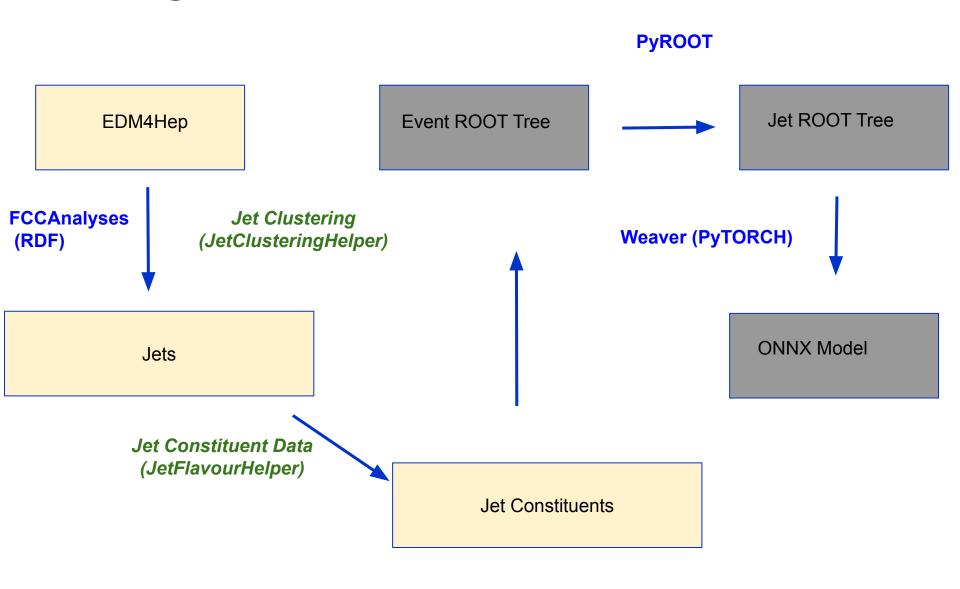
Sample Generation for training

- Generation of the samples in EDM4hep (whole event reconstructions, features for training not explicit)
- FCCAnalyses (wrapper RDataFrame)
 - Per-event → per-jet structure
 - 2 stages. 1: read edm4hep and extract features. 2: produce n-tuples one per class.
 - final dataset: 5/7 classes and 10⁶ events per class
 - trained on gpus (A100)

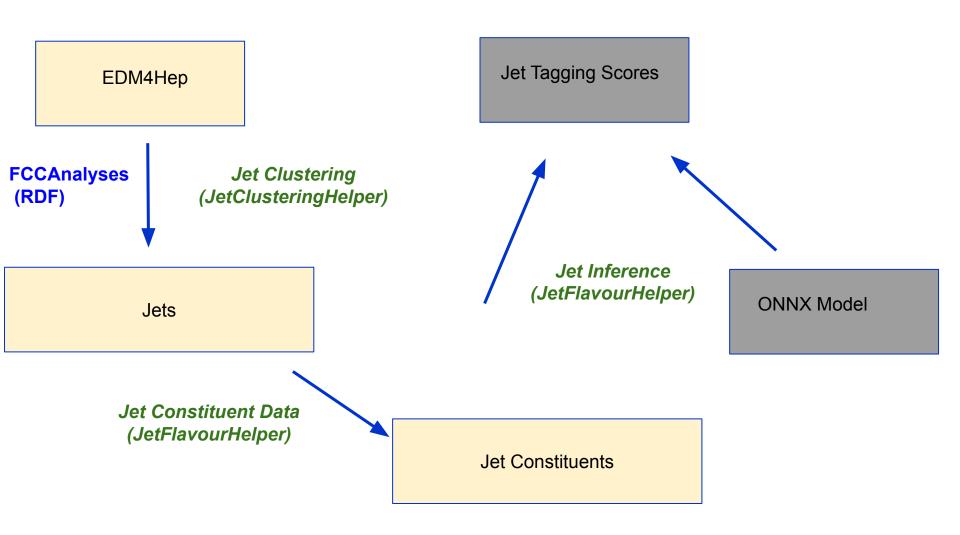
Inference

- Inference in FCCAnalyses:
 - load ONNX training files
 - Extract hard vertex and perform jet clustering
 - Extract jet constituents and compute observables
 - Evaluate NN → output: one probability per category

Training the model



Inference



Inference with FCCAnalyses

```
## get local file, else download from url
weaver_preproc = get_file_path(url_preproc, local_preproc)
weaver_model = get_file_path(url_model, local_model)
from addons.ONNXRuntime.python.jetFlavourHelper import JetFlavourHelper
from addons.FastJet.python.jetClusteringHelper import ExclusiveJetClusteringHelper
## define jet clustering parameters
jetClusteringHelper = ExclusiveJetClusteringHelper(collections["PFParticles"], njets, tag)
                                                                                               JetClusteringHelper
## run jet clustering
df = jetClusteringHelper.define(df)
## define jet flavour tagging parameters
jetFlavourHelper = JetFlavourHelper(
    collections,
    jetClusteringHelper.jets,
   jetClusteringHelper.constituents,
    tag,
                                                                                                 JetFlavourHelper
## define observables for tagger
df = jetFlavourHelper.define(df)
## tagger inference
df = jetFlavourHelper.inference(weaver_preproc, weaver_model, df)
return df
```

Loading model parameters

Jet clustering

Obtain input parameters

Run inference

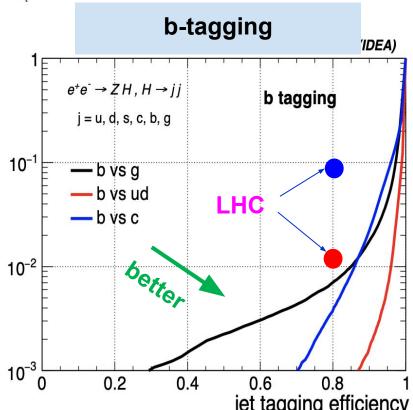
jet misid. probability

WP

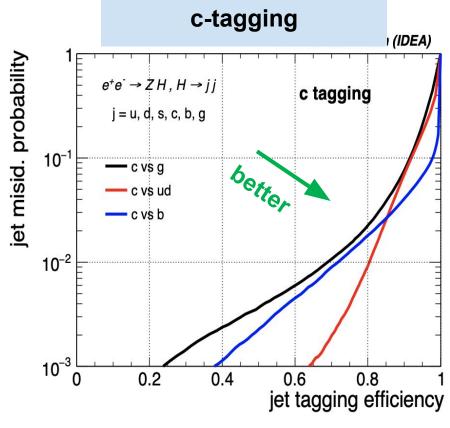
Loose

Medium

ParticleNet@FCCee: b/c tagging

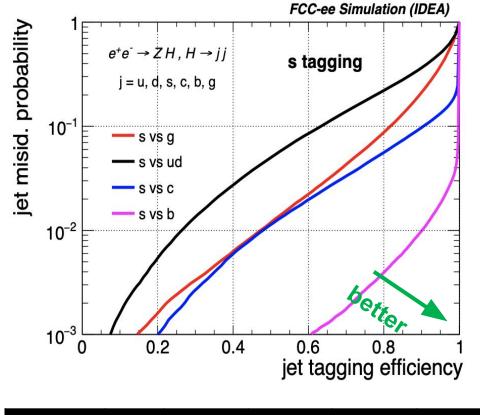


10 ⁻³ 0		2 0.4 0.6 0.8 1 jet tagging efficiency			
WP	Mistag (c)	Mistag (ud)	g	Mista	
Loose		2%			
Medium		0.3%	<0.1% 0.3%	0.7% <0.1% 0.3%	

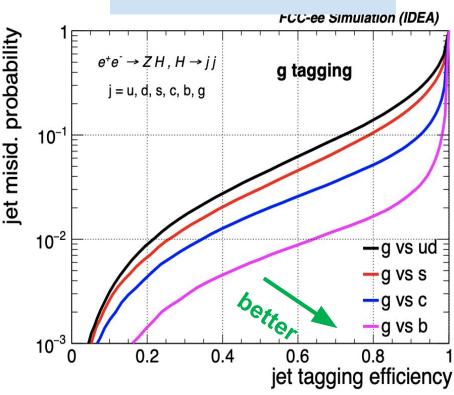


WP	Eff (c)	Mistag (g)	Mistag (ud)	Mistag (b)
Loose	90%	7%	7%	4%
Medium	80%	2%	0.8%	2%

ParticleNet@FCCee: s/g tagging



gluon -tagging

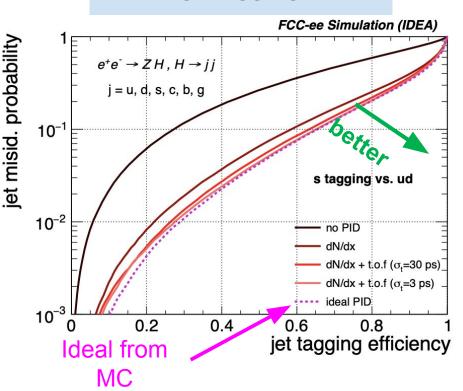


WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	20%	40%	10%	1%
Medium	80%	9%	20%	6%	0.4%

WP	Eff (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	25%	7%	2.5%
Medium	80%	15%	5%	2%

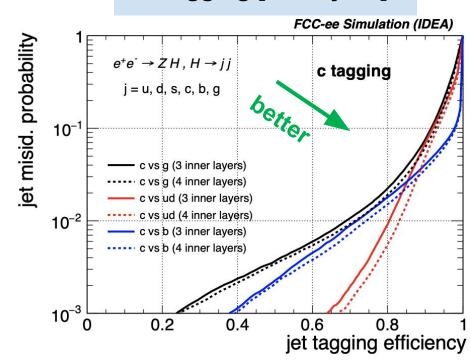
Impact of detector configurations

Strange tagging [PID]



- dN/dx brings most of the gain additional gain w/ TOF (30ps)
 - TOF (3ps): marginal improvement
 - dN/dX + TOF(30ps) ~ perfect PID

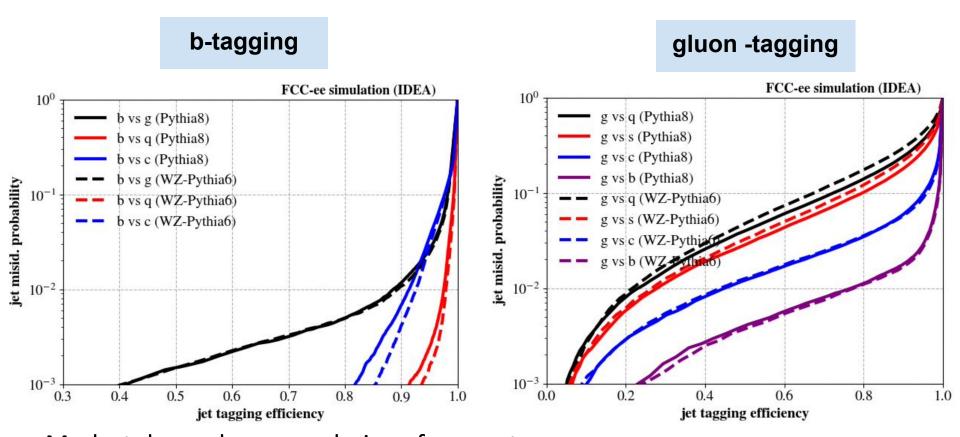
c-tagging [PIX layers]



- Additional pixel layer 1 cm from beam pipe vs 1.5 cm:
 - improved BKG rejection in c-tagging
 - marginal/no improvement in b-tagging

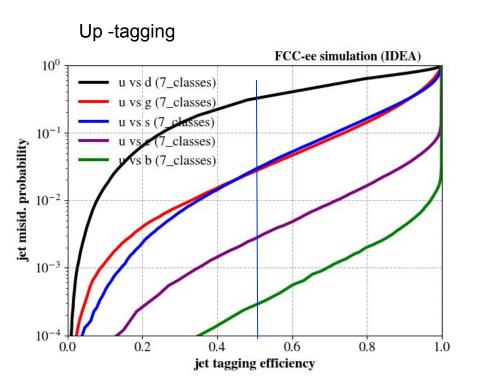
Robustness

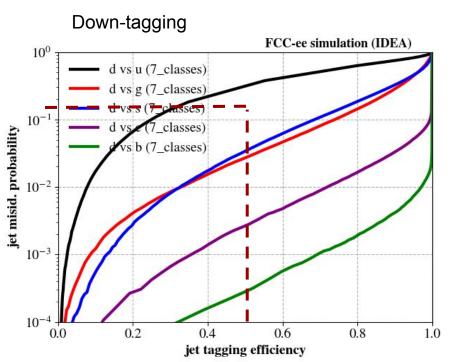
- ParticleNet-ee trained using *Pythia 8* samples
 - tested on *Pythia 8* [solid lines]
 - tested on WZ-Pythia6 [dashed lines]



- Modest dependence on choice of generator
- More parton showers coming up (Herwig, Sherpa...)

Tagger update(up and down)





- Up vs Down discrimination seems possible thanks to jet charge
- 30% bkg eff at 50% signal (better than random coin toss)

Summary

- Powerful jet flavour identification important for the e⁺e⁻ physics program
- Sophisticated jet tagging algorithms developed for e⁺e⁻ experiments
 - Striking improvement in tagging performance compared to previous tools
 - allows us to explore more of the detector and event reconstruction potential
 - Integrated in FCCSW [data preparation, training, validation, inference, analysis] and used in FCCee physics analyses

- Still room for improvement / other ideas to try:
 - secondary tasks, secondary vertexing regression
 - new higher order graph architectures
 - improve explainability
 - resilience to modelling (more generators)
 - calibration (Z pole → ZH threshold extrapolation)

