

New physics search by precise measurements of 2-fermion final states at the ILC

2023/12/20 Kyushu Univ, KEK^A Koushi Nagae, Taikan Suehara, Kiyotomo Kawagoe, Tamaki Yoshioka, Keisuke Fujii ^A

2-fermion $e^+e^- \rightarrow f\bar{f}$ event

- $e^+e^- \rightarrow f\bar{f}$ (f: charged lepton or quark)
- The production of fermion pairs is sensitive to a heavy gauge boson (Z').
- If there are interactions mediated by Z', the total cross section and differential cross section will deviate from the predictions of the Standard Model.

 \rightarrow Interference terms with Z and γ , and Z' can be observed.

Feynman diagram for fermion pair production when new physics (Beyond the Standard Model: BSM) is included.

Conditions of the study

ILD full simulation (ilcsoft v02-00-01), $\sqrt{s} = 500 \text{ GeV}$

Lepton channel ($\mu\mu$, $\tau\tau$ final states)

- Bhabha events to be done
- Signal Events:
 - $e^+e^- \rightarrow l^+l^-$ (Z* true mass $\geq 450 \text{ GeV}$)

Background Events:

- 2-fermion background $e^+e^- \rightarrow l^+l^- \; (Z^* \; {\rm true} \; {\rm mass}{<} 450 \; {\rm GeV}) \\ {\rm other} \; {\rm flavors}$
- 4-fermion background leptonic events (mainly W/Z-derived)

Polarization

• *e*[−]: ∓80% , *e*⁺: ±30%

Luminosity

 $1600 \ \mathrm{fb^{-1}}$ each

Quark channel (quark final states(w/o t))

Signal Events:

• $e^+e^- \rightarrow q \bar{q} ~(Z^* \text{ true mass} \ge 450 \text{ GeV})$

Background Events:

- 2-fermion background
 - $e^+e^- \rightarrow q\bar{q}$ (Z* true mass<450 GeV) other flavors
- 4-fermion background
 - hadronic events (mainly W/Z-derived) semileptonic events (mainly W/Z-derived)

Evaluation flow

Evaluation of Z' new physics search

In the case of new physics

- angular distributions deviate due to the interference with Z'.
- These angular distributions will now be compared with various Z' models to evaluate the performance of the new physics search in the ILC at energy of 500 GeV.
 - For quark events, flavour tagging is made and then Charge Identification is performed.

Procedures for evaluating each model search

• The accuracy $(\delta \sigma_i / \sigma_i (SM))$ of the i-th bin of the angular distribution is evaluated as

• The deviation of the differential cross section predicted by the standard model and each model for this i-th bin $(\delta \sigma_i(BSM) / \sigma_i(SM))$ is determined, and from

$$\chi^{2}(BSM) = \sum_{i} \left\{ \left(\frac{\delta \sigma_{i}(BSM)}{\sigma_{i}(SM)} / \frac{\delta \sigma_{i}}{\sigma_{i}(SM)} \right)^{2} \right\},$$

the χ^2 is obtained.

Deviation on angular distribution & mass limit

Z' mass [GeV]

Z' mass [GeV]

For μμ

Z' (SSM

M-=5000Ge

s=500GeV

 $(P(e^{-}), P(e^{+})) = (-0.8, +0.3)$

1600f

SSM: Sequential Standard Model

chi : $E_6 \chi model (\beta = 0)$

psi : $E_6 \psi model (\beta = \pi/2)$

ALR : Alternative Left-Right symmetric

s=500GeV

 $(P(e), P(e^{+})) = (-0.8 \pm 0.3)$

1600fb

Z' (eta)

M-=5000Ge

--1) SM

Mass limit for each 5 channel (preliminary)

5-sigma

5		SSM	ALR	X	ψ	η
	μ	5.4 TeV	7.3 TeV	5.3 TeV	2.8 TeV	3.1 TeV
-	τ	4.8 TeV	6.4 TeV	4.7 TeV	2.4 TeV	2.7 TeV
	b	5.9 TeV	2.7 TeV	3.9 TeV	2.7 TeV	2.1 TeV
	С	3.8 TeV	3.7 TeV	2.0 TeV	1.9 TeV	2.0 TeV
-	q(u,d,s)	4.0 TeV	4.1 TeV	2.0 TeV	2.0 TeV	2.2 TeV

2-sigma

0	SSM	ALR	X	ψ	η
μ	8.8 TeV	11.8 TeV	8.5 TeV	4.4 TeV	4.9 TeV
τ	7.7 TeV	10.4 TeV	7.5 TeV	3.9 TeV	4.4 TeV
b	9.4 TeV	4.3 TeV	6.2 TeV	4.2 TeV	3.4 TeV
С	6.2 TeV	5.9 TeV	3.1 TeV	3.0 TeV	3.2 TeV
q(u,d,s)	6.5 TeV	6.6 TeV	3.2 TeV	3.2 TeV	3.6 TeV

Mass limit for 5 channel combined (preliminary)

For μ + τ +b+c+q(uds)

Vertical axis: Log10(Probability at χ^2 for Z' mass) Horizontal Axis: Z' mass 5-sigma -> -6.52 (discovery reach) 2-sigma -> -1.3 (95% CL lower limit)

Z'model	SSM	ALR	X	ψ	η
5-sigma	7.5 TeV	8.4 TeV	6.2 TeV	3.6 TeV	3.8 TeV
2-sigma	12.0 TeV	13.6 TeV	10.0 TeV	5.8 TeV	6.1 TeV

Summary

- I performed the calculation for the mass limit when combining μμ, ττ, bb, cc, and qq(uds) events.
- An evaluation was conducted for five models, and when combining all event, it ranged from 3.6-8.4 TeV at 5 sigma and 5.8-13.6 TeV at 2 sigma (these results are not yet final).
- However, the systematic error setting is still insufficient and needs to be reexamined.
- Also, I will also incorporate lepton pair events and evaluate them interactively.

Particle Flow Algorithm (PFA)

- A method to obtain higher jet energy resolution by reconstructing the particle trajectory for each type of particle in the jet.
- Charged particles: Tracker
- Photons: ECAL
- Neutral hadrons : HCAL \rightarrow To separate the deterioration of resolution for neutral hadrons
- Resolution of a calorimeter for a single particle :

Perfect PFA: $\sim 20\% / \sqrt{E(GeV)}$ PandoraPFA : $\sim 30\% / \sqrt{E(GeV)}$ w/o PFA : 50 - 60% / $\sqrt{E(GeV)}$

Data Model II

by Frank Gaede, DESY

2-fermion $e^+e^- \rightarrow f\bar{f}$ event

- $e^+e^- \rightarrow f\bar{f}$:
- ゲージヒッグス統一(GHU)モデルでは、ヒッグス粒子はゲージポテンシャルの余剰次元成分の 一部であり、これは5次元におけるアハロノフ-ボーム(AB)相(θ_H)の変動として表されます。 ILC において GHU モデルのずれを見ることができるかを判断することもできる。
- また、最近提案された新物理探索法として、WIMP(weakly-interacting massive particle) による $e^+e^- \rightarrow f\bar{f}$ のずれを一般的に調べる方法がある。
- これまで解析してきた 2 フェルミオン終状態の過程 ($e^+e^- \rightarrow f\bar{f}$) に、WIMP(χ)を導入し $Z \rightarrow \chi\chi \rightarrow Z$ のループを含んだダイアグラム を仮定すると、結合定数が変わってくる。この結合定数の ずれは WIMP のスピンや質量によって異なり、WIMP モデルの詳細には依存しない。

16

Previous results

•muイベントとtauイベントの場合のZ'新物理探索の評価の結果

Evaluation of Z' new physics search by mu & tau event

Z'model	SSM	ALR	X	ψ	η	
5-sigma	4.7 TeV	6.4 TeV	4.6 TeV	2.4 TeV	2.7 TeV	
5-sigma = discovery reach						

Z'model	SSM	ALR	X	ψ	η	
2-sigma	6.6 TeV	8.8 TeV	6.4 TeV	3.3 TeV	3.7 TeV	
2-sigma = 95% CL lower limit						

Previous results: 山城さん

重心系エネルギー 250 GeV の ILC の $e^+e^- \rightarrow \ell^+\ell^-$ の測定で 3σ 以上のずれで 検出可能な Z' の質量の上限。チャンネルを追加して質量の上限が下がる場合は、追加前の 上限の値を用いている。これは χ^2 の値が 1 のまま bin 数が増えると確率が上がるためで ある。

Z' model	l	b	С	$\ell + b$	$\ell + b + c$
SSM	$2.8 { m TeV}$	$4.5 { m TeV}$	$2.7 { m ~TeV}$	$4.5 { m TeV}$	$4.5 { m TeV}$
ALR	$4.0 { m TeV}$	$2.9~{\rm TeV}$	$2.8 { m TeV}$	$4.0 { m TeV}$	$4.0 { m TeV}$
χ	$2.9 { m TeV}$	$2.4 { m TeV}$	$1.4 { m TeV}$	$2.9 { m TeV}$	$2.9 { m TeV}$
ψ	$1.4 { m TeV}$	$2.1 { m TeV}$	$1.4 { m TeV}$	$2.1 { m TeV}$	$2.1 { m ~TeV}$
η	$1.8 { m TeV}$	$2.3 { m TeV}$	$1.4 { m TeV}$	$2.3 { m TeV}$	$2.3 { m ~TeV}$

シグナルイベントの定義

- シグナルイベントデータを質量に基づいてシグナルとバックグ ラウンドに分割。
- •この質量はファインマンダイアグラムのZ*質量に対応
- •もしZ*の質量が小さい場合、Z*と干渉する重い新しい粒子、例 えばZ'の寄与は小さくなります。
- Z'モデルを計算する際、Z*は500 GeV(ISRやその他の効果を 含まない)と仮定されているので、低いZ*の寄与が含まれてい る場合、結果は私たちが期待するものとは異なる。
- したがって、低質量のイベントをバックグラウンドとして除外

オープニングアングル

信号ジェット間の角度はほぼ180度 →180度付近のイベントは、シグナル(2フェルミオン)イベントと考えられる

Input parameter 1

Single Jet mass

y value

Isolated leptons

top: NumberOfElements

bottom: Energy of isolated leptons

Input parameter 2

Missing momentum (2jet)

Costheta (jet)

Visible energy(2 jet)

bb

予測されたフレーバーごとのcos θ 分布 (event selection後)
Blue: Left-handed (e⁻, e⁺)=(-80%,+30%) Red : Right-handed(e⁻, e⁺)=(+80%,-30%)
赤は、青のイベント数に合わせて

スケーリングされています。

CC

35441

0.4975

0.2715

Z'モデル

- Z'は、標準理論のフェルミオンに結合する新しい中性ゲージボソンです。Z'の結合定数はモデルによって異なり、この研究ではSequential Standard Model(以下、SSMモデル)とE₆モデルを使用します。
- Sequential Standard Model (SSMモデル): このモデルでは、Z'という粒子は、すでに知られているZ 粒子と同じような性質を持っていると考える
- E_6 モデル: このモデルは少し複雑で、新しい粒子Z'は、2つの他の粒子(Z_ψ と Z_χ)の組み合わせとして 表される

 $Z' = Z_{\chi} \cos\beta + Z_{\psi} \sin\beta$

- ここで、 β は E_6 の自発的な破れを定義する混合角です。この評価では、 β の3つの値が使用され、 χ モデル (β =0)、 ψ モデル(β = $\pi/2$)、および η モデル(β = π – arctan $\sqrt{5/3}$)として参照される
- Alternative Left-Right symmetric (ALRモデル): このモデルもE₆モデルから派生しており、新しい粒子Z'の性質を考えるためのものです。ただし、このモデルではZ'の性質が標準モデルのZ粒子とは少し異なると考えられている

quark flavor tagging

To evaluate the search for new physics, it is necessary to determine the cross-section for each flavor.

To do this, flavor tagging is performed, dividing events into b, c, q(u,d,s), and others.

After event selection		predicted flavor					
		q (u,d,s)	С	b	others		
NOL	q (u,d,s)	2,661,403	83,956	36,887	34,311		
ue fla	С	266,296	834,452	89,949	10,348		
trı	b	13,535	21,423	705,974	5,104		

Flavor tagging is applied to the two reconstructed jets.

- If the flavors of both jets match, that event is classified as the tagged quark.
- Events that do not match are classified as the quark with the higher score.
- Events where the tagging fails for both jets are classified as 'others'.

Charge ID: Method for measuring jet charge

For reconstructed 2-jet events of quarks, we want to determine which one is q and which one is \overline{q} . \rightarrow It's necessary to cross-reference the simulation data with the charge of particles within the jet to match them up.

ILD-PHYS-PUB-2023-001, June 2023,

"Experimental methods and prospects on the measurement of electroweak b and c-quark observables at the ILC operating at 250 GeV"

B hadron

decay

perturbative

OCD

Perturbative QCD

Hard process

 Z^0

Charge ID: Method for measuring jet charge

- For *cc*
 - Cat.1 ->K-method
 - Cat.2 ->Vtx-method
 - Cat.3 ->One jet used K-method and the other used Vtx-method
- For $b\overline{b}$
 - Cat.1 ->Vtx-method
 - Cat.2 ->K-method
 - Cat.3->One jet used Vtx-method and the other used K-method

This time, rather than evaluating whether charge ID could be done on an event-by-event basis, we used the efficiency from previous research.

ILD-PHYS-PUB-2023-001, June 2023

Efficiency($\cos\theta$)

• The number of signal events S_i for each $b\overline{b}$ and $c\overline{c}$ events is $S_i = cross \ section \times luminocity \times efficiecny$

Efficiency depends on $\cos\theta$ and is calculated, including the feasibility of Charge ID. For $b\overline{b}$ (The same applies for the $c\overline{c}$):

$$efficiency_angle = \frac{\# of (true \ b\bar{b}) \ w/eventcut}{\# of (true \ b\bar{b}) \ w/o \ eventcut} \times \frac{\# of \ predicted \ b\bar{b}}{\# of \ predicted \ total} \times Charge \ ID \ efficiency$$
For events that were not identified by Charge ID, use the following equation for efficiency relative to the total cross section.

