EFT in LHC

Tatsuya Masubuchi University of Tokyo (ICEPP)

東京大学 素粒子物理国際研究センター International Center for Elementary Particle Physics The University of Tokyo

ILC meeting

Higgs EFT interpretation in LHC

- No any BSM evidence in LHC (so far) from direct searches
- Effective Field Theory (EFT) can set model-independent constraint on BSM physics and indirectly searches beyond LHC reach
- LHC often uses SMEFT (Warsaw basis)

Higgs EFT formalism

Observe cross-section enhancement(kinematic dependence)

- Only CP-even dim-6 operators
- Describe 3rd generation from first two generations independently (Top flavor symmetry scheme)
- All lepton generations are modeled independently

EFT operators in Higgs

Wilson coefficient	Operator	Wilson coefficient	Operator
c_H	$(H^{\dagger}H)^3$	$c^{\scriptscriptstyle(1,1)}_{oldsymbol{Q} oldsymbol{q}}$	$(ar{Q}\gamma_{\mu}Q)(ar{q}\gamma^{\mu}q)$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	$c_{oldsymbol{Q}oldsymbol{q}}^{\scriptscriptstyle (1,8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$
c_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	$c^{(3,1)}_{Qq}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$
c_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$c_{Qq}^{(3,8)}$	$(\bar{Q}\sigma^i T^a \gamma_\mu Q)(\bar{q}\sigma^i T^a \gamma^\mu q)$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	$c^{(3,1)}_{aa}$	$(ar{q}\sigma^i\gamma_\mu q)(ar{q}\sigma^i\gamma^\mu q)$
$c_{H\!G}$	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	$c_{ty}^{(1)}$	$(ar{t}\gamma_\mu t)(ar{u}\gamma^\mu u)$
c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$c_{ta}^{(8)}$	$(\bar{t}T^a\gamma_{\mu}t)(\bar{u}T^a\gamma^{\mu}u)$
c_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	$c^{(1)}_{\iota \iota}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$
c_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	$c_{ta}^{(8)}$	$(\bar{t}T^a\gamma_{}t)(\bar{d}T^a\gamma^{\mu}d)$
$c_{Hl,11}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{1}\gamma^{\mu}l_{1})$	$C_{ta}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$ $(\bar{Q}\gamma_{\nu}Q)(\bar{u}\gamma^{\mu}u)$
$c_{Hl,22}^{\scriptscriptstyle (1)}$	$(\boldsymbol{H}^{\dagger}i\overleftrightarrow{\boldsymbol{D}}_{\mu}\boldsymbol{H})(\bar{l}_{2}\boldsymbol{\gamma}^{\mu}\boldsymbol{l}_{2})$	$c_{Qu}^{(8)}$	$(\bar{Q}T^a\gamma_{\mu}Q)(\bar{u}T^a\gamma^{\mu}u)$
$c_{Hl,33}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{3}\gamma^{\mu}l_{3})$	$\mathcal{C}_{Qu}^{(1)}$	$(\bar{Q}\gamma^{\mu}Q)(\bar{d}\gamma^{\mu}d)$
$c_{Hl,11}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{1}\tau^{I}\gamma^{\mu}l_{1})$	$c_{Qd}^{(8)}$	$(\bar{Q} / \mu Q)(\bar{d} T^a \circ^{\mu} d)$
$c_{Hl,22}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	$c_{Qd}^{(1)}$	$(\mathbf{Q}\mathbf{I} \neq \mu \mathbf{Q})(\mathbf{u}\mathbf{I} \neq \mathbf{u})$
$c_{Hl,33}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{l}_{3}\tau^{I}\gamma^{\mu}l_{3})$	c_{tq}	$(\bar{q}\gamma_{\mu}q)(\bar{\iota}\gamma^{\mu}\iota)$
$c_{He,11}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{1}\gamma^{\mu}e_{1})$	c_{tq}	$(qI^{-}\gamma_{\mu}q)(tI^{-}\gamma^{\prime}t)$
$c_{He,22}$	$(\boldsymbol{H}^{\dagger}i\overleftrightarrow{\boldsymbol{D}}_{\mu}\boldsymbol{H})(\bar{\boldsymbol{e}}_{2}\boldsymbol{\gamma}^{\mu}\boldsymbol{e}_{2})$	$c_{eH,22}$	$(H^{\dagger}H)(\bar{l}_{2}e_{2}H)$
$c_{He,33}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{3}\gamma^{\mu}e_{3})$	$c_{eH,33}$	$(\boldsymbol{H}^{\dagger}\boldsymbol{H})(\bar{l}_{3}\boldsymbol{e}_{3}\boldsymbol{H})$
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	c_{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	c_{tH}	$(H^{\dagger}H)(\bar{Q}\widetilde{H}t)$
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_{bH}	$(H^{\dagger}H)(\bar{Q}Hb)$
c_{Hd}	$(\boldsymbol{H}^{\dagger}i\overleftarrow{\boldsymbol{D}}_{\mu}\boldsymbol{H})(\bar{d}_{p}\boldsymbol{\gamma}^{\mu}\boldsymbol{d}_{r})$	C_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$
$c_{HQ}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \tilde{H} W^I_{\mu\nu}$
$c_{HQ}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$	c_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$
$c_{Ht} \\ c_{Hb}$	$ \begin{array}{c} (H^{\dagger}iD_{\mu}H)(t\gamma^{\mu}t) \\ (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b) \end{array} \end{array} $	$c_{ll,1221}$	$(\bar{l}_1\gamma_\mu l_2)(\bar{l}_2\gamma^\mu l_1)$

ATLAS-CONF-2023-052

C_{HDD}

q

Ч		K
-	×	ℓ

~50 related to Higgs measurements considered

Higgs Combination and STXS

How to constrain EFT parameters? What measurements are powerful?
 Simplified template cross-section (STXS)

Combined STXS measurement in LHC

Decay channel	ggF	VBF	VH	ttH/tH
Н→үү	~	✓	~	~
H→ZZ	~	✓	~	~
H→WW	~	✓	✓*	✓*
Н→тт	~	✓	~	~
H→bb	~	✓	~	~
H→Zγ	Inclusive			
H→µµ	v	~	~	~

Most of channels use full Run2 dataset (~140fb⁻¹)

2023/12/20

STXS measurements

Decay branching ratios are also considered in EFT interpretation

$\sqrt{s} = 13 \text{ T}$ $m_{\odot} = 125$	eV, 139 fb ⁻¹	Hendreit He	Sta
m _H = 120			
		L.	Total Stat. S
	0-jet, p ^m ₇ < 10 GeV ►	0.66	+0.27 -0.26 (±0.24 ,
	0-jet, 10 ≤ p ^H ₇ < 200 GeV	1.24	+0.18 -0.17 (±0.15 ,
	1-jet, $p_{\tau}^{\mu} < 60 \text{ GeV}$	1.16	+0.39 -0.38 (±0.36 ,
	1-jet, 60 ≤ p ₇ ^H < 120 GeV	1.14	+0.40 -0.36 (±0.33 ,
44 5	1-jet, 120 ≤ p ^H _T < 200 GeV	0.93	+0.57 -0.53 (+0.53 ,
<i>gg</i> → <i>H</i> (γγ)	\ge 2-jet, m_{i} < 350 GeV, p_{τ}^{H} < 120 GeV	0.58	+0.56 -0.54 (+0.53 -0.52 ,
	\ge 2-jet, $m_{\rm g}<350~{\rm GeV},~120 \le p_{_T}^{\rm H}<200~{\rm GeV}$	1.31	+0.50 -0.48 (+0.48 -0.47 ,
	\ge 2-jet, $m_{g} \ge$ 350 GeV, p_{τ}^{H} < 200 GeV	1.09	±0.95 (+0.91 ,
	200 ≤ p ^H ₇ < 300 GeV	1.56	+0.45 (+0.41 ,
	300 ≤ p ^H ₇ < 450 GeV	0.17	+0.56 -0.49 (+0.54 -0.47 ,
	ρ _T ≥ 450 GeV	2.11	+1.47 (+1.42 ,
	≤ 1-jet and VH-veto	1.05	+0.96 -0.86 (+0.90 ,
	≥ 2-jet, VH-had	0.21	+0.74 (+0.72 , -0.63 (-0.62 ,
	\approx 2-jet, 350 $\leq m_g$ < 700 GeV, p_T^H < 200 GeV	1.28	+0.80 -0.60 (+0.61 ,
qq→Hqq (γγ)	\ge 2-jet, 700 $\le m_j <$ 1000 GeV, $p_{\gamma}^{H} <$ 200 GeV	1.47	$^{+0.84}_{-0.68}$ ($^{+0.72}_{-0.64}$,
	\ge 2-jet, $m_{g} \ge$ 1000 GeV, $p_{\tau}^{\prime\prime} <$ 200 GeV	1.31	+0.46 -0.38 (+0.36 ,
	≥ 2 -jet, 350 $\le m_g < 1000 \text{ GeV}, p_{_T}^H \ge 200 \text{ GeV}$	0.31	+0.74 (+0.73 , -0.61 (-0.59 ,
	\ge 2-jet, $m_{g} \ge$ 1000 GeV, $p_{\tau}^{H} \ge$ 200 GeV	1.69	+0.67 -0.57 (+0.61 -0.52 ,
aa →Hlv (vv)	$p_{T}^{v} < 150 \text{ GeV}$	1.75	+0.82 (+0.80
	$p_T^v \ge 150 \text{ GeV}$	1.65	-0.90 (+1.11 ,
aa/aa →HII/vv I	yy) p ^v < 150 GeV	-0.64	+0.88 (+0.87 .
19144 110111	p ^V ₇ ≥ 150 GeV	0.39	+1.10 (+1.08
			-0.82 V -0.91 V
	<i>p</i> ^{<i>N</i>} ₇ < 60 GeV →	0.83	+0.82 -0.69 (+0.81 -0.68 ,
74 ()	$60 \le p_T^H < 120 \text{ GeV}$	0.81	+0.60 -0.51 (+0.59 -0.50 ,
0.011	$120 \le p_{\gamma}^{H} < 200 \text{ GeV}$	0.65	+0.64 -0.54 (+0.63 -0.53 ,
	200 ≤ p ^H ₇ < 300 GeV	1.23	+0.81 -0.65 (+0.80 , -0.65 ,
	<i>p</i> ^{<i>H</i>} ₇ ≥ 300 GeV	1.17	+0.96 -0.75 (+0.95 -0.74 ,
H (YY)	H	2.06	+9.13 -3.27 (+3.94 -3.14 ,
H(Ζγ)		2.05	+0.97 (+0.88 ,
i Li		 La par La par La com	
-8	-6 -4 -2 0 2	2 4 6	8 10

Relative impact of EFT operators

Modified basis with linear combinations

- Not able to constrain all Wilson coefficients in current sensitivity
 - → Huge correlation among measurements
 - → 19 parameters are reparametrized by the linear combinations

Impact on reparametrized coefficients

- Extract the feature of each coefficient more clearly
- Mitigated correlations among coefficients

Results

- Only linear term considered
- No strong deviation from SM (p-value 94.5%)
- O(1 TeV)-O(10 TeV) scale can be probed in the current sensitivity ^{10 T}
- Various production/decay modes contributes EFT parameter constraint

Linear vs Linear+Quad

 In general, linear+quad provides stronger constraint (dim8 terms are important) _{ATLAS} Preliminary

ATLAS-CONF-2023-052

Constrain UV complete BSM models

EFT to 2HDM constraints

- EFT measurement can be mapped to the UV-complete models
- SMEFT constraints are interpretated 2HDM using theory paper

SMEFT parameters	Type I	Type II	Lepton-specific	Flipped
$\frac{v^2 c_{tH}}{\Lambda^2}$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{bH}}{\Lambda^2}$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$
$\frac{v^2 c_{eH,22}}{\Lambda^2}$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{eH,33}}{\Lambda^2}$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}\tan\beta$	$Y_{\tau}c_{\beta-\alpha}\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_H}{\Lambda^2}$	$c^2_{eta-lpha}M^2_A/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c^2_{eta-lpha}M^2_A/v^2$

• $\Lambda \gg v$ in EFT $\rightarrow \cos(\beta - \alpha) \rightarrow 0$ (valid near alignment limit)

- Constrain in tanβ vs cos(β-α)
- use only single Higgs for c_H constraint (no HH direct measurement included)

14

 $Y_{b,t,\mu,\tau} = \frac{\sqrt{2}m_i}{n} (\sim SM)$

ATLAS-CONF-2023-052

2HDM constraints

Only linear expansion for EFT

- No surprise and large 2HDM parameter spaces are excluded
- c_H constraint is included in Type-I

15

2HDM constraint

Compare with interpretation with coupling measurement(k-framework)

- Coupling measurement gives similar (slightly better) constraint
 - Missing dim-8 operators
 - No petal structure in EFT (no 2nd minimum)

Constraints on MSSM

Eur. Phys. J. C 79 (2019) 617, 279 ATLAS-CONF-2023-052

- Not use EFT interpretation results but Constraint from STXS measurements
- Several MSSM benchmark scenarios are considered (more in backup)

$M_{H}^{125}(\overline{\chi})$ scenario:

All charginos and neutralinos are relatively light with significant higgsino-gaugio mixing $H \rightarrow bb, H \rightarrow \gamma \gamma$ decay enhanced (suppressed) at low(high) tan β ,

 $M_H^{125}(alighment)$ scenario: Alignment without decoupling scenario one of CP even scalars have SM-like couplings tan $\beta \sim 7 \rightarrow$ nearly SM-like

hMSSM scenario:

 m_{H} is 125.09 GeV with radiative correction from stop-top sector, determine α , m_{H} , $m_{H\pm}$, couplings

EFT in DiHiggs

- DiHiggs production is sensitive to the EFT parameters
 - Both interpretations for HEFT and SMEFT
 - 1D or 2D parameter scan (other parameters fixed to zero)

arXiv:2310.12301

HH→bbyy

ILC meeting

19

Coupling

Constraint on CP-odd operators

• $H \rightarrow ZZ \rightarrow 4I$ constraint with CP-odd EFT parameters

Operator

Structure

Warsaw Basis

Other EFT interpretations

ATL-PHYS-PUB-2022-037

- Combined EFT interpretations with other EW measurements
 - Differential cross section measurements with diboson and VBF Z production

(All EW measurements are not included yet)

Process	Important phase space requirements	Observable	$\mathcal{L} \ [\mathrm{fb}^{-1}]$	Ref.
$pp \to e^{\pm} \nu \mu^{\mp} \nu$	$m_{\ell\ell} > 55 GeV, p_{\mathrm{T}}^{\mathrm{jet}} < 35 GeV$	$p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$	36	[19]
$pp \to \ell^{\pm} \nu \ell^{+} \ell^{-}$	$m_{\ell\ell} \in (81, 101) GeV$	m_{T}^{WZ}	36	[20]
$pp \to \ell^+ \ell^- \ell^+ \ell^-$	$m_{4\ell} > 180 GeV$	m_{Z2}	139	[21]
$pp \to \ell^+ \ell^- jj$	$m_{jj} > 1000 GeV, m_{\ell\ell} \in (81, 101) GeV$	$\Delta \phi_{jj}$	139	[22]

 Electroweak precision observable (mainly from SLC and LEP)

Observable	Measurement	Prediction	Ratio
Γ_Z [MeV]	2495.2 ± 2.3	2495.7 ± 1	0.9998 ± 0.0010
R^0_ℓ	20.767 ± 0.025	20.758 ± 0.008	1.0004 ± 0.0013
R_c^{0}	0.1721 ± 0.0030	0.17223 ± 0.00003	0.999 ± 0.017
R_{b}^{0}	0.21629 ± 0.00066	0.21586 ± 0.00003	1.0020 ± 0.0031
$A_{\rm FB}^{0,\ell}$	0.0171 ± 0.0010	0.01718 ± 0.00037	0.995 ± 0.062
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035	0.0758 ± 0.0012	0.932 ± 0.048
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	0.1062 ± 0.0016	0.935 ± 0.021
$\sigma_{ m had}^{00}$ [pb]	41488 ± 6	41489 ± 5	0.99998 ± 0.00019

2023/12/20

Summary

- No BSM particle found (so far) at LHC 1
- Higgs, EW, top precise measurements provide valuable EFT interpretations and stronger constraints
- Still can improve EFT formalism for both theory and experimental sides
 - Principal component analysis
 - Global EFT interpretation
 - Provide simplified likelihood in HEPdata
 - Dim-8 calculation
- Showed EFT interpretation is usable to constrain UV complete model
 → Beyond 2HDM scenarios?

Backup

- SMEFT cross sections are calculated by LO diagrams (NLO QCD for loop, NLO QED for H→γγ, Zγ)
- Higher order calculation computed by scaling SM cross section assuming the same relative effect on σ_{int} and σ_{BSM} as on σ_{SM}

$$\sigma_{\text{SMEFT}} = \sigma_{\text{SM}}^{((\text{N})\text{N})\text{NLO}} \times \left(1 + \frac{\sigma_{\text{int}}^{(\text{N})\text{LO}}}{\sigma_{\text{SM}}^{(\text{N})\text{LO}}} + \frac{\sigma_{\text{BSM}}^{(\text{N})\text{LO}}}{\sigma_{\text{SM}}^{(\text{N})\text{LO}}}\right)$$

EFT formulation

Branching ratio effects are taken into account

$$(\sigma \times B)_{\text{SMEFT}}^{i,k',H \to X} = (\sigma \times B)_{\text{SM},(\text{N}(\text{N}))\text{NLO}}^{i,k',H \to X} \left(1 + \frac{\sigma_{\text{int},(\text{N})\text{LO}}^{i,k'}}{\sigma_{\text{SM},(\text{N})\text{LO}}^{i,k'}} + \frac{\sigma_{\text{BSM},(\text{N})\text{LO}}^{i,k'}}{\sigma_{\text{SM},(\text{N})\text{LO}}^{i,k'}} \right) \left(\frac{1 + \frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}} + \frac{\Gamma_{\text{BSM}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}}}{1 + \frac{\Gamma_{\text{SM}}^{H}}{\Gamma_{\text{SM}}^{H}}} + \frac{\Gamma_{\text{SM}}^{H \to X}}{\Gamma_{\text{SM}}^{H}}} \right)$$

Linear+Quad

ILC meeting

Constraints on 2HDM

2HDM: one of natural extension of Higgs sector

• parameter: h, H, A, H[±], CP-even mixing angle α , two doublet mixing β , m₁₂

Coupling	Type I	Type II	Lepton-specific	Flipped
u, c, t		$s_{\beta-\alpha}+c$	$c_{\beta-\alpha}/\tan\beta$	
d, s, b	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha}-c_{\beta-\alpha}\times \tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$
e, μ, τ	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$	$s_{\beta-\alpha} - c_{\beta-\alpha} \times \tan\beta$	$s_{\beta-\alpha} + c_{\beta-\alpha}/\tan\beta$
W, Z		s	$\beta - \alpha$	
Н	$s_{\beta-\alpha}^{3} + \left(3 - 2\frac{\bar{m}^{2}}{m_{h}^{2}}\right)c_{\beta-\alpha}^{2}s_{\beta-\alpha} + 2\cot\left(2\beta\right)\left(1 - \frac{\bar{m}^{2}}{m_{h}^{2}}\right)c_{\beta-\alpha}^{3}$			
	v_1^2	+ $v_2^2 = v^2$, tan eta	$v = \frac{v_2}{w}, \overline{m}^2 = \frac{n}{\sin \theta}$	$m_{12}^2 = m_A^2 + \lambda_5 \eta$

Assuming,
$$\lambda_5 v^2 \ll m_A^2$$
, $\overline{m} = m_A = 1$ TeV ($\lambda_5 = 0$)

Constraints on MSSM

Global EFT EW inputs

- <u>https://indico.cern.ch/event/1296757/timetable/</u>
- <u>https://indico.cern.ch/event/1276727/timetable/?view=standard</u>