

Test beam experiment of the large prototype of high granularity calorimeter for future electron-positron colliders

Tatsuki Murata

On behalf of the CERN beam test team

December 20th, 2023

5th general meeting of ILC-Japan Physics Working Group

Introduction

- Future electron positron collider
 - Precision measurements of the Higgs/EW/QCD
 - Calorimeter system requirement
 - High granularity for both ECAL and HCAL
 - 5 mm for ECAL, few cm for HCAL
 - Jet resolution $\sim 30\%/E$

- Particle Flow Algorithm (PFA) oriented Detector
 - SiWECAL, Sci-ECAL, DECAL, etc...

Test beam experiment

- Test beam experiment for Sci-ECAL and AHCAL combined system is conducted at CERN SPS&PS
 - SPS : site 887, H8 beamline
 - October 19th to November 2nd, 2022
 - High energy beam (10-160 GeV)
 - μ⁻, π⁻, e⁻
 - SPS : Site 887, H2 beamline
 - April 26th to May 10th, 2023
 - High energy beam (10-350 GeV)
 - Higher energy and purity beam than last year's H8 beamline
 - μ^-, π^-, e^-, p^-
 - PS : Site 157, T9 beamline
 - May 17th to 31st, 2023
 - Low energy beam (1-15 GeV)
 - μ⁻, π⁻, e⁻
- Collaborators
 - CALICE, UTokyo, Shinshu university, USTC, IHEP, SJTU

ILC-Japan Physics Working Group

Sc-ECAL

3.82mm

Scintillator

- Scintillator-based Electromagnetic Calorimeter (Sc-ECAL)
 - ECAL concept based on strip-shaped plastic scintillator readout by SiPM
 - Center dimpled readout based on $5 \times 45 \times 2 \text{ mm}^3$ scintillator strip
 - Virtual segmentation of 5×5 mm² cell can be achieved by x-y configuration of strips with strip splitting algorithm (SSA)
- Sc-ECAL protorype
 - Sampling layers : 32 layers
 - Absorption thickness : tangusten $32 \times 3.2 \text{ mm} (\sim 23.3 X_0)$
 - Electronics : SPIROC2E
 - SiPMs : S12571-010P, -015P
 - Scintillator : injection molding BC408

	Pixel size	# of pixel	gain
S12571-010P	10 um	10,000	1.35*10^5
S12571-015P	15 um	4,489	2.3*10^5

CEPC-AHCAL

- CEPC-Analog Hadron Calorimeter (AHCAL)
 - HCAL concept based on scintillator cell readout by SiPM with center dimple
 - tile size : $40 \times 40 \times 3 \text{ mm}^3$
 - AHCAL barrel consists of 32 super modules, a super module has 40 sampling layers
 - PFA oriented design
- CEPC-AHCAL prototype
 - Absorption material : Fe
 - Absorption 40×20 mm (steel) ~4.7 λ_n , ~3.9 λ_π
 - Electronics : SPIROC2E
 - SiPMs : MPPC S14160-1315PS, NDL 22-1313-15-S(last two layers)
 - Scintillator : injection molding NDL

		Pixel size	Sensor area	# of pixels
	S14160-1315PS	15 um	1.3×1.3 mm ²	7,284
C-Jap	22-1313-15-S	15 um	4.45×3.65 mm ²	7,396 × 4

Preliminary results

- Pedestal
- Gain calibration
- MIP calibration
- High gain and low gain intercalibration
- Energy reconstruction
- Simulation and validation

Pedestal calibration

- Pedestal was obtained from events that did not exceed threshold
 - Some channels had multi-peaks due to electronics problem at last years data
- Pedestal is obtained from forced trigger mode

Blue histogram stands for pedestal from force-trigger-mode file Red stands for pedestal from beam data file

ILC-Japan Physics Working Group

35

Gain calibration

- LED is mounted in EBU and HBU to measure gain for each channel
 - LED data are fitted with triple gaussian to find gain
 - Fitting is not good for some channels
 - $\sim 15\%$ for ECAL $\sim 70\%$ for HCAL

8

Gain [ADC]

10 12 14 16 18 20 22 24

Gain [ADC]

20 22 24 26 28 30 32 HCAL gain

High gain and low gain intercalibration

- SPIROC2E chip has two gains (high gain and low gain) to cover a large dynamic range
- High gain ADC saturates at different value among channels
- The result is consistent with the gain difference

MIP calibration

channel No.

6*layer No.+ chip No.

- MIP peak value is calculated from fitting muon events' ADC distribution by Langaus function
- Some channels are not well fitted due to lack of statistics and bad SN ratio
 - $\sim 20\%$ for ECAL and HCAL

ECAL MPV

ILC-Japan Physics Working Group

Energy resolution (electron beam)

- Reconstructed energy using new MPV, pedestal, and intercalibration factors
 - MPPC saturation is not corrected
- Linearity of energy get worse above 200 GeV
 - Low gain ADC saturates from 150 GeV
- Resolution is bad at 80 GeV and above 200 GeV
 - Bad beam profile (80 GeV)
 - Saturation of low gain ADC (above 200 GeV)

Simulation and validation

- Geant4 full simulation is established
 - Geometry : for both Sc-ECAL and AHCAL prototype
 - Scintillation : quenching effect (Birks' law) is implemented
 - Assuming perfect response uniformity for each channel
 - MIP calibration of each channel : done in data
 - Digitization
 - Photon statistics, SiPM saturation, ASIC saturation
- There are some discrepancy between data and MC
 - Still working in progress

Summary and prospect

- Sci-ECAL and AHCAL combined test beam experiments are conducted at CERN
 - SPS H8 beamline in last October
 - SPS H2 beamline in this April to May
 - PS T9 beamline in this May
- Collected data in wide energy range for electrons, pions, and muons
- Analyses of the combined beam test is ongoing
 - Preliminary calibrations are almost finished
- Some detailed analyses are also ongoing
 - shower analysis,
 - PID
 - Test beam simulation
 - etc...
- Plan
 - SiPM saturation, temperature correction
 - Geant4 MC validation
 - Sci-ECAL and AHCAL combined analysis

Thanks for CERN, CERN staff, and CALICE collaboration colleagues