

Long-lived particle searches with the ILD detector

Jan Klamka, A.F. Żarnecki University of Warsaw

jan.klamka@fuw.edu.pl

Motivation and goal

- Multiple LLP searches at the LHC
- LHC sensitive to high masses and couplings

 \rightarrow e⁺e⁻ competitive in complementary region: small masses, couplings and mass splittings

- \rightarrow typical properties of feebly interacting massive particles (FIMPs)
- For the LLPs, ILD potentially promising with the TPC
- Few analyses for Higgs factories using full simulation

We take:

- experiment-oriented approach,
- a generic case two muons coming from a displaced vertex,
- no other assumptions about the final state, model-agnostic strategy

As a challenging case (small boost, low-pT final state) we considered:

ightarrow (tuned) Inert Doublet Model sample with small mass splitting, ${
m Z}^*
ightarrow \mu \mu$

Framework and signatures

The opposite extreme case, (large boost, high-pT final state)

ightarrow (tuned) axion-like particle model sample, $a
ightarrow \mu\mu$

Simple vertex finding, based on a distance between track pairs

6 December 2023

Jan Klamka, Long-lived particle searches with the ILD detector

e⁺

e

Vertex finding strategy

Approach as simple and general as possible:

- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
 - → use **both track direction** (charge) **hypothesis** for vertex finding
 - \rightarrow consider opposite-charge track pairs only
 - \rightarrow select pair with **closest starting points**
- Reconstruct vertex in **between points of closest** approach of helices
 - \rightarrow Require distance < 25 mm

6 December 2023

Overlay events

At the ILC, on average **1.05 low-pT hadrons** and **1 seeable** e⁺e⁻ pair events are overlaid per bunch-crossing

- \rightarrow they can look like signal on their own
- ~10¹¹ bunch-crossings per year at ILC
- Overlay events can be busy
 - \rightarrow can also contribute to fake secondary vertices
- kinematics similar to signal
 - \rightarrow expected to give dominant contribution as a <u>separate background</u>
 - Can be suppressed using cuts on the $\boldsymbol{p}_{_{T}}$ and geometry of track pair
 - Total expected reduction factor at the level of ~10⁻⁹ (~10⁻¹⁰) for low-pT had. (e⁺e⁻ pairs)

5

Results (heavy scalar signal)

- Consider "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality)
- $\Delta m = 1$ GeV scenario needs dedicated approach

6 December 2023

Results (ALP signal)

- Efficiency increases with mass (decreasing boost)
- Better performance for smaller radii (as opposed to heavy scalar case)
- High efficiency for masses from $1\ \text{GeV}$

6 December 2023

Efficiency

Cross section limits

With the overlay events as the main background, we can also estimate expected 95% C.L. limits on the **signal production cross section**

Assume

- 2 ab⁻¹ of data at 250 GeV and 4 ab⁻¹ at 500 GeV ILC,
- 10 yr and 8.5 yr \times 10¹¹ bunch-crossings (BXs),
- 1.05 (1.00) $\gamma\gamma \rightarrow$ had. (seeable e^+e^- pairs) events per BX,
- total background rejection of 10^{-9} $(10^{-10}) \rightarrow \sim 1150$ expected N_{bg} events for 250 GeV
- No. of signal ev. corresponding to the limit: $N_{sig} = 1.64 \cdot \sqrt{N_{bg}}/\epsilon_{sel}$

Cross section limits (so far)

- Valid for kinematic region $p_{_{\rm T}}{}^{_{\rm Vtx}}>1.9$ GeV and only for decays inside TPC volume
 - \rightarrow Correct for the TPC acceptance
 - \rightarrow Get predictions for different lifetimes reweight the events using probability distributions

Cross section limits (new)

• For different lifetimes, $\mathbf{\tau}$ ', reweight the events by ratio of exponential PDFs:

 $w = P(t, \tau')/P(t, \tau_0)$ (with τ_0 used for sample generation; for $\tau' = \tau_0$, w = 1)

Cross section limits (new)

• For different lifetimes, $\mathbf{\tau}$ ', reweight the events by ratio of exponential PDFs:

 $w = P(t, \tau')/P(t, \tau_0)$ (with τ_0 used for sample generation; for $\tau' = \tau_0$, w = 1)

- Limited statistics in the samples for decays at large distances problem for higher $\tau^{\prime}:$
 - \rightarrow <u>cutoff</u> at a large distance (L_{max} = 3 m) above which finding a vertex is impossible
 - $\rightarrow N_{all} = \Sigma w / w_{max}$ where $w_{max} = tot.$ probability that LLP decays before L_{max}

 $\rightarrow N_{\mbox{\tiny pass}} = \varSigma w$ for events passing selection in TPC

Now with $\epsilon_{sel} = N_{pass}/N_{all}, N_{sig} = 1.64 \cdot \sqrt{N_{bg}}/\epsilon_{sel}$

- Good sensitivity, even for high lifetimes
- Limits still conservative due to the model-independent approach (not using e.g. invariant mass or missing energy)

6 December 2023

Summary

- LLPs studied for challenging parameter space regions complementary to LHC searches, two tracks from a displaced vertex analysed in a model-agnostic way
- Heavy scalars production considered, with small O(1 GeV) mass splittings between LLP and DM and low-momenta decay products
- Reconstruction of highly boosted, light ALPs, with O(1 GeV) masses, performed with the same algorithm and procedure
- Estimated 95% CL limit on signal cross section ≤ 1 fb for many scenarios, with cτ between 1 mm and 100 m

Next steps under consideration:

- Analysis extension to displaced jets (Higgs decays to LLPs?)
- In parallel ongoing tests of other ILD designs TPC with pixel readout
 - → tracking performance still needs improvement (any contributions more than welcome)

BACKUP

6 December 2023

Reweighted events

Alternative all-silicon ILD design

Alternative ILD design implemented for tests

- **TPC replaced** by the **silicon Outer Tracker**, modified from the CLICdet
- One **barrel layer** added and **endcap layers spacing** increased w.r.t. CLICdet
- **Conformal tracking** algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD

 \rightarrow Check how the **results** for <u>heavy scalars</u> are influenced by a **change of tracker** design

6 December 2023

Heavy scalars at all-silicon ILD

- <u>Vertex reconstruction</u> driven by track reconstruction efficiency
- Performance similar to baseline design (TPC) <u>near</u> <u>the beam axis</u>
- Smaller number of hits available → efficiency drops faster with vertex displacement
- At least 4 hits required for track reconstruction
 → limited reach
- For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

Test signal scenarios

First challenging scenario (**small-boost**, **low-p**_T track pair, **not pointing towards IP**):

- pair production of <u>heavy</u>, <u>neutral scalars</u> from Inert Doublet Model (IDM):
 A (heavier) and H (lighter; stable dark matter candidate)
- A can be long-lived for small mass splittings between A and H
- dominant decay: $A \to HZ^*; \ Z^* \to \mu \mu$ decay used for vertex reconstruction studies

Test signal scenario – highly boosted light LLPs

Exactly the opposite extreme scenario (small LLP mass, very high pT, collinear tracks):

- **axion-like particle** (ALP) produced alongside hard photon (UFO model by R. Schafer, S. Bruggisser, S. Westhoff)
- Use the **same procedure** as for IDM (same algorithm, cuts), ${
 m a} o \mu \mu$ decay used for studies
- Number of decays within acceptance strongly varies between signal scenarios

MC track opening angle at vtx

6 December 2023

Distance to the true vertex

Consider a vertex ,,correct" if distance to the true vtx < 30 mm

Final selection – pT

- We consider $\gamma \gamma \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions ~10⁻³ (~10⁻⁵–10⁻⁷ with preselection)
- Very small statistics in e⁺e⁻ sample after preselection → fit shape from γγ → had. with floating normalisations
 pT of the dilepton system

Final selection – other variables

• d_C – distance between centres of helices projections into XY plane

(TrackStates / first hits)

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that **signal** tracks should come out of a single point → **reference points should be close**
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- \rightarrow either far reference points or close centres of helices

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_C$ good for optimal signal-background separation \rightarrow use it to look for correlation

6 December 2023

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_{C} \le -2000 \text{ mm}$, signal eff. $\sim 37\% (\Delta m = 2 \text{ GeV})$
- Estimated background eff. from fitted distributions ~10⁻⁴ (~10⁻⁶–10⁻⁷ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had.$ (e^+e^- pairs)

Selection assuming correlations

For small correlations r between x and y, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{ref} - \mathbf{d}_{C}$, assuming $\mathbf{30\%}$ correlation, for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8·10⁻⁶ (3.4·10⁻⁶)

• $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow$ combined with preselection

Combined cut efficiency $x > 2 \cap y > 3$

25