ITN Briefing Meeting for Source Grope Work packages for e-driven positron scheme

Yoshinori Enomoto (KEK)

ILC Technology Network

Comparison of positron sources

- Big jump from SuperKEKB and SLC
 - 3 x SLC in beam power (74 kW)
 - 4 x SuperKEKB in capture efficiency
- Technologies developed in the project will be used for more than decades in this field, as SLC did 30 years ago

WP-8 Rotating Target (for e-driven Scheme)

- 74 kW (3 x SLC) beam power
- Rotating mechanism
 - Water-cooled
 - UHV compatible
 - o **225 rpm**
- Target disk
 - W-Cu connection
 - Mechanical and thermal evaluation
 - CFD simulation using experimental data
 - HIP, SPS, Brazing
 - Target material selection and evaluation
 - Mechanical property at operating temperature
 - Cost, lead time, available size, uniformity

WP-8 Rotating Target (for e-driven Scheme)

- 74 kW (3 x SLC) beam power
- Rotating mechanism
 - Water-cooled
 - UHV compatible
 - o 225 rpm
- Target disk
 - W-Cu connection
 - Mechanical and thermal evaluation
 - CFD simulation using experimental data
 - HIP, SPS, Brazing
 - Target material selection and evaluation
 - Mechanical property at operating temperature
 - Cost, lead time, available size, uniformity

Electron gun: JEBG-3000UB manufactured by JEOL Ltd.

WP-8 Rotating Target (for e-driven Scheme)

- 74 kW (3 x SLC) beam power
- Rotating mechanism
 - Water-cooled
 - UHV compatible
 - o 225 rpm
- Target disk
 - W-Cu connection
 - Mechanical and thermal evaluation
 - CFD simulation using experimental data
 - HIP, SPS, Brazing
 - Target material selection and evaluation
 - Mechanical property at operating temperature
 - Cost, lead time, available size, uniformity

- To improve strength, ductility, recrystallization resistance, radiation tolerance, many alloying and composite technologies have been developed.
- We should keep in mind their availability, cost, lead time and availability.
- Especially, W is made by sintering, making large plate keeping uniformity is difficult.
- In the case of alloy, uniformity is much more important than that for pure W.
- There are no high-power positron target which use large size (50 cm diamater) W-alloy as far as I know.

WP-9 Magnetic focusing (for e-driven Scheme)

- Flux concentrator
 - More than 10 times higher ohmic loss compared with that of SKEKB
 - Additional beam loss from target
 - In addition to EM design, thermal and mechanical engineering are important
- Pulsed power supply
 - o 300 Hz compatible
 - Due to un-even pules to pulse period
 - More than 10 times higher power compared with that of SKEKB
 - Energy recovery mechanism is necessary
 - Flat top control during 1 pulse (66 bunches, 500 ns)
 - Compactness to be installed in the accelerator tunnel
 - Similar parameters for kicker magnet power supply

	ILC*	SKEKB
current	35 kA	12 kA
Pulse width	10 us	5 us
Repetition	100 Hz	50 Hz
Ohmic loss	10 kW	0.7~0.8 kW (measured)
Beam loss	4 kW	Small
Total loss@ Load	14 kW	0.7~0.8 kW (measured)
P.S. power	150 kW	12 kW

*parameters for ILC are not fixed

WP-10 Capture cavity

- Design challenges of Large aperture L-band cavity
 - Beam loading compensation for multi bunch operation
 - Full model RF and beam simulation
 - Very high heat load of shower from the target
 - novel cooling design
 - Remote beam flange connection
 - Connection point is surrounded by solenoid

Previous design and prototype at SLAC Phys. Rev. AB 12, 042001 (2009)

WP-11 Target replacement

- Target area will be activated heavily
- Many Common technology to all the other high-power accelerator
- Not only simulation and evaluation, experience and knowledge transfer are important
 - 3 times exchange experiences through SKEKB operation
 - Collaboration with other high power target facilities, J-PARC, RIKEN, FRIB...
- Mechanical, vacuum engineering
 - Automatic flange connection
 - o Movable base

Girder structure on rail

Automatic connection coupler

Pillow seal 9

Latest 3D model

Test bench in KEK

IJCLab / FCCee

	14th International Particle Accelerator Conference, Venice, Italy	/ JACoW Publishing
ISBN: 978-3-95450-231-8	ISSN: 2673-5490	doi: 10.18429/JACoW-IPAC2023-MOPL094
BENCHMARK	ING THE FCC-ee POSITRON SOU	RCE SIMULATION
ТОС	DLS USING THE SUPERKEKB RE	SULTS *
F. Alharthi ^{†1} , I. C	Chaikovska, R. Chehab, CNRS-IJCLab, Paris-S	Saclay U.,Orsay, France
	¹ also at KACST, Riyadh, Saudi Arabia	
	Y. Zhao, A. Latina, CERN, Geneva, Switzer	land
Y. Enomoto, F. M	iyahara, High Energy Accelerator Research Or	ganization (KEK) Japan

- SuperKEKB and FCC-ee has been collaborating for many years using the framework of FJPPL
 - Iryna-Enomoto collaboration started in 2018

rk, publisher, and DOI.

 First collaborative work between KEK and LAL started in 1980's by our Predecessors.

CERN / CLIC

- Discussion about FC with CERN date back to LCWS2019 at Sendai
- Steffen showed big progress on the development of FC at LCWS2023

Discussion

- SuperKEKB and FCC-ee, CLIC already have some kind of collaboration and connection.
- How do we expand and integrate collaboration using ITN framework?
- Considering present status and progress of ILC, FCC-ee and CLIC, it's a good timing to advance our collaboration!!