First Physics Benchmark for ML Generated Photon Showers in the ILD ECAL

F. Gaede¹, G. Kasieczka², A. Korol¹, K. Krüger¹, T. Madlener¹, **P. McKeown^{1*}** ¹ Deutsches Elektronen Synchrotron, DESY ² University of Hamburg, UHH

* peter.mckeown@desy.de

Introduction

- Full MC simulation (Geant4) is computationally expensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer high fidelity simulation with significant speed up:
 - More sustainable computing

CMS Collaboration, Offline and Computing Public Results (2022), https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Highly Granular Calorimeters for Future Experiments

- Widely planned for future experiments: e.g. HL-LHC, e+e- Higgs Factories
- Case Study: International Large Detector (**ILD**) concept for the International Linear Collider (ILC)
- **Optimized for Particle Flow**
 - Reconstruct each individual particle in subdetector ٠
 - Obtain optimal detector resolution ٠
- High granularity calorimeters:
 - 5mm x 5mm ECAL: Si-W
- ~ 80 million channels

c.f. a few cm^2 for

(before High Lumi)

- HCAL: Sci-Fe 30mm x 30 mm ~ 8 million channels

Common Generative Models

- VAE¹: Encoder-decoder structure
- GAN²: Adversarial feedback from discriminator

¹D.P. Kingma, M. Welling. Auto-encoding Variational Bayes (2014), <u>arXiv:1312.6114</u>

²Goodfellow et. al., Generative Adversarial Nets (2014), <u>arXiv:1406.2661</u>

Initial Progress: Photons and Pions

- Achieved **high fidelity** generation of **photon** and **pion** showers with **BIB-AE** architecture (and post processing)
 - 90 deg impact angle, fixed position in calorimeter
 - Fixed regular 3D grid geometry (O(10-100k) voxels)

BIB-AE: Bounded Information Bottleneck Auto-Encoder as well as comparison to GAN and WGAN ...

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, Buhmann et al., <u>arXiv:2005.05334</u>, Comput Softw Big Sci 5, 13 (2021)

Hadrons, Better, Faster, Stronger Buhmann, P.M. et al, <u>arXiv:2112.09709</u>, MLST 3 2, 025014 (2022),

Towards An Application In Realistic Detector Simulation

Previously: Energy and Single Angle Conditioning

- Photons incident at fixed position
- Extend **BIB-AE** architecture
- Normalising flow for latent space sampling
- Vary incident energy and polar angle
 - Large training sample 500k showers
 - Uniform in [10-100 GeV, 30-90 deg]
 - Test/validation samples at fixed energies and angles

30x60x30 grid

Previously: Conditioning Performance

After full PandoraPFA reco

• Rec level angle reconstruction

 Rec level calibrated energy

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. 2023 MLST 4 035044 DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

Previously: Performance After Reconstruction

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. 2023 MLST 4 035044 DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

Best (left) and worst (right) test point → **Excellent** physics fidelity

DESY. | ILD Meeting | Peter McKeown | 20.09.2023

Two Angle Training Data – Regular ECAL

- Create ILD ECAL with **regular** structure for **training**
- Exactly the **same layer wise** material **composition**
- **Purely sensitive** material in active layers (remove dead material)

- No projection to from irregular to regular grid
- All energy deposited in active layers recorded
- During simulation with realistic detector geometry, hits in dead material are dropped by Geant4

Regular ILD ECAL

Two Angle Training Data

- Vary angles to **minimise box size**, but retain information about **incident position**
- Used Geant4 version 10.4
- Training: vary **energy** and **two angles** simultaneously:
 - Energy: 5-126 GeV
 - Theta: 30-95 degrees
 - Phi: 65-95 degrees
- Test 7 calorimetric observables at 27 fixed points:
 - E: 10, 50, 100 GeV
 - Theta: 40, 60, 90 deg.
 - Phi: 70, 80, 90 deg.

Grid size

DESY. | ILD Meeting | Peter McKeown | 20.09.2023

Page 12

Integration into the Full Simulation Chain

- Prototype library for running ML-based fast sim models: *DDFastShowerML* <u>https://gitlab.desy.de/ilcsoft/ddfastshowerml</u>
 - Use fast sim hooks in DDG4/Geant4
 - Use realistic, detailed detector models
 - Currently only supports CPU
 - Development ongoing
 - Aim to have an easy to use library which can be adapted for all types of ML architectures in DD4hep
 - Essential step to be able to study performance of model with full physics benchmarks

BIB-AE Integration Into Realistic Geometry

- BIB-AE model with full conditioning now integrated into ILD detector simulation chain
- **Seamless integration** with full MC simulation in Geant4
- Exclude regions of detector where model cannot be applied to geometry
 - **Corners** of octagonal barrel
 - Exclude 8 degree window (in phi) for each corner
 - **Transition** between barrel and endcap
 - Exclude **7 degree** window (in theta) for each barrel/endcap transition

Hadronic Tau Decays as a First Benchmark

- Now possible to run ML model in **full physics simulation**
- Tau branching fractions:
 - ~17.8% $\tau \rightarrow e \overline{\nu}_e \nu_{\tau}$
 - ~17.4% $\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$
 - ~64.8% hadronic decays
- Hadronic decay modes often involve $\pi^0 s$ (di-photon)
 - Classic benchmark of ECAL performance

Benchmark on Photons From Pi0 decays in Tau Pair Samples

- Use generator files for **2f_leptonic_eL_pR** from 2020 production
 - Select events with **E>10 GeV** for **both** γ s from a π^0 (from a τ)
- Simulate 9,000 $e^-e^+ \to \tau^-\tau^+ @ 250 \text{ GeV}$
 - Sample 1+2: Full Geant4 (Version 10.4 and Version 11.1)
 - Sample 3: Use **BIB-AE** for $e^{+/-}$ and γ incident on calorimeter with E>10 GeV (+ passing geo trigger)
 - Exactly the **same events from generator** in both cases
 - 3 runs with **different random seeds** for uncertainties
- Apply full standard reconstruction in both cases

Reconstruction performance depends on what happens in Geant4 (both full G4)

Benchmark: Reconstruction performance (π^0 **s)**

		π^0 correctly recoed	π^0 missed	π^0 incorrectly recoed	No. Good – No. Confused	
π^0 S	No. True	No. Reco	No. Good	No. Missed	No. Confused	No. Fake
Geant4 V11.1	16693	8942 ± 69	2452 ± 33	12843 ± 27	1398 ± 33	5092 ± 80
Geant4 V10.4	16693	9021 ± 119	2545 ± 35	12789 ± 35	1359 ± 10	5117 ± 96
BIB-AE	16693	9192 ± 130	2576 ± 16	12720 ± 2	1397 ± 16	5219 ± 128

- Now look at π^0 reco-candidates with criteria on MC-Truth link:
 - Only take pi0s linked to a tau
 - Both γs have E>10 GeV and passed geometry fast sim triggers

No Peco -

Photons from Tau pi0s

Reco. γ

BIB-AE

10

0

20

30

40

Geant4 V11.1

Geant4 V10.4

Tau pi0s

Conclusion

Achieved

- Energy and angular conditioning for EM showers with high physics fidelity
- Additional angle added in conditioning- reduce grid size (compute) and remove artefacts from regular-irregular projection
- An initial implementation of a **prototype library** for interfacing with the full simulation chain
- First physics benchmark for generative fast sim in high granularity calorimeter
 - π^0 from taus- **similar level of performance** to differences between Geant4 versions
 - Some deviations in reconstruction performance still visible

Next Steps

- Extend functionality of library (batching, GPU support etc.)
- Other generative models based on **point clouds** naturally handle irregular geometries
- Hadronic showers in ECAL+HCAL

CaloClouds: Fast Geometry-

JINST 18 (2023) 11, P11025

Highly-Granular Calorimeter Simulation,

CaloClouds II: Ultra-Fast

Highly-Granular Calorimeter

Geometry-Independent

Buhmann, P.M. et al., arXiv:2305.04847,

Independent

Latent Space sampling

- **Relaxing regularisation** of latent space allows more information to be stored
 - Latent space deviates from a Normal distribution
- Employ **density estimation** to produce latent sample (**normalising flow**)
- Improve modeling of shower shape (center of gravity)

Buhmann et. al: Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web of Conferences 251, 03003 (2021)

ILD ECAL 883. Module

Tackling Irregular Geometries

Physical geometry BI

BIB-AE cell-level

Timing Of Generative ML Methods

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	×1
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	$\times 56 \times 8$
GPU	WGAN BIB-AE	$egin{array}{c} 0.264 \pm 0.002 \ 2.051 \pm 0.005 \end{array}$	$\begin{array}{c} \times 10167 \\ \times 1309 \end{array}$

BIB-AE/WGAN, pion showers 10-100 GeV uniform

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	4417 ± 83	×1
	BIB-AE	362 ± 2	$\times 12$
GPU	BIB-AE	4.32 ± 0.09	×1022

BIB-AE, photon showers 10-100 GeV - 30-90 deg uniform

MC Pi0– daughter correlations

MC Pi0 – Momentum

MC Pi0 – Energy

MC Pi0 – Theta

Longitudinal

Nhits

Visible energy

Radial Energy

