Focus topics for the ECFA study on Higgs / Top / EW factories

1	HtoSS — $e^+e^- \rightarrow Zh$: $h \rightarrow s\bar{s} (\sqrt{s} = 240/250 \text{GeV})$	9
2	ZHang — Zh angular distributions and CP studies	12
3	Hself — Determination of the Higgs self-coupling	15
4	Wmass - Mass and width of the W boson from the pair-production threshold cross section	
	lineshape and from decay kinematics	19
5	WWdiff — Full studies of WW and $e\nu W$	23
6	TTthres — Top threshold: Detector-level simulation studies of $e^+e^- \rightarrow t\bar{t}$ and threshold	
	scan optimisation	25
7	LUMI — Precision luminosity measurement	27
8	EXscalar — New exotic scalars	32
9	LLPs — Long-lived particles	34
10	EXtt — Exotic top decays	37
11	CKMWW — CKM matrix elements from W decays	39
12	BKtautau — $B^0 \rightarrow K^{0*} \tau^+ \tau^-$	42
13	TwoF — EW precision: 2-fermion final states ($\sqrt{s} = M_Z$ and beyond)	45
14	BCfrag and Gsplit — Heavy quark fragmentation and hadronisation, gluon splitting and	
	quark-gluon separation	48

A. Freitas (U. Pittsburgh)

LUMI – Precision luminosity measurement

Expert team: P. Azzurri, I. Bozovic, M. Dam, A. Freitas, A. Irles, A. Meyer F. Piccinini, W. Płaczek, A. Sailer, M. Skrzypek, G. Wilson

- Gitlab wiki
- Sign up for egroup: ECFA-WHF-FT-LUMI@cern.ch
- Email WG1 PREC conveners: ecfa-whf-wg1-prec-conveners@cern.ch

Slide materials from M. Dam, S. Jadach, G. Wilson

Overview

- Luminosity calibration important for total cross-section and lineshape measurements (Z pole, WW, HZ, ...)
- ► Absolute calibration, goal < 10⁻⁴
- ► Point-to-point precision, goal < 10⁻⁵
- Requirements for Lumi calibration process(es):
 - Large rate / low backgrounds
 - Good control of exp. systematics
 - Reliable, high-precision theory prediction, negligible BSM influence

Exploit well known QED reference processes with no (or weak) dependence on EW parameters

Mogens Dam / NBI Copenhagen

ECFA MiniWorkshop : Luminosity

17.12.2022

Small-angle Bhabha scattering

- Experimental challenges:
 - Metrology (geometrical acceptance)
 - Beam parameters
 - Energy calibration and background from beamstrahlung (for LCs)
- Theory challenges:
 - Photon vacuum polarization
 - Pair production
 - NLO electroweak corrections

LumiCals @ FCC-ee

Challenge:

- MDI region is very busy, LumiCals pushed far inside main detector volume
- Not much space + increased requirements to precision

LumiCal effects: Focussing of final state particles

- Small angle final state particles feel focussing effect while traversing through counter-rotating bunch
 - Effect was present already at LEP but only corrected for in 2019
 - LEP Bhabha cross sectins were overestimated by about 0.1%
 - Integrated luminosities were underestimated
 - cross sections were overestimated by about 0.1%
 - Number of neutrino generations was underestimated by 0.26%

 $N_{\nu} = 2.9840 \pm 0.0082$

$$N_{\nu} = 2.9918 \pm 0.0081$$

- At FCC-ee, situation more complicated due to finite beam-crossing angle
 - Detailed Guinea-Pig simulation studies
 - Average angular focussing of 41 μrad @ 45.6 GeV and @ 64 mrad
 - Aceptance effect of the same magnitude as at LEP
 - 0.19%
 - ~20 times luminosity accuracy goal !!
 - Focussing effect is reflected in also acollinerity angle distribution of Bhabha events
 - Allows a correction to be done to an estimated 10⁻⁴ accuracy

Bhabha theory uncertainties

- Mostly QED process -> controlled calculation of h.o. corr.
- Implementation in MC framework is complex task, but not fundamental obstacle
- Challenge 1: fermion pair production
- Challenge 2: hadronic vacuum polarization (non-perturbative, from data or lattice)

• LEP lumi updat	e 2018		The path to 0.01% theoretical luminosity precision for the FCC-ee 🛱	Guesta do spilar es
Type of correction / Error (a) Photonic $O(L_e \alpha^2)$ (b) Photonic $O(L_e^3 \alpha^3)$ (c) Vacuum polariz. (d) Light pairs (e) s-channel Z-exchange (f) Up-down interference (f) Technical Precision Total	1999 0.027% [5] 0.015% [6] 0.040% [7,8] 0.030% [10] 0.015% [11,12] 0.0014% [27] - 0.061% [13]	Update 20 0.027% 0.015% 0.013% [2 0.010% [0.015% 0.0014% (0.027)% 0.038%		

- By the time of FCC-ee VP contribution will be merely 0.006%
- QED corrections and Z contrib. come back to front!

•	Z contrib. easy (?) to master	Type of correction / Error	Update 2018	FCCee forecast
	Improvements on photonics	(a) Photonic $O(L_e^4 \alpha^4)$	0.027%	$0.6 imes 10^{-5}$
	cors. will be difficult,	(b) Photonic $O(L_e^2 \alpha^3)$	0.015%	$0.1 imes 10^{-4}$
	new MC will be needed!	(c) Vacuum polariz.		0.6 × 1074
		(d) Light pairs		<u>0,5 × 10 / 4 / 1</u>
•	Our FCC-ee forecast is	(e) Z and s-channel γ exchange		$0.1 imes 10^{-4}$
	0.01% provided QED	(f) Up-down interference	0.009% [27]	$0.1 imes 10^{-4}$
	m.e. and VP are improved.	(f) Technical Precision	(0.027)%	0.1×10^{-4}
	22	Total	0.097%	1.0×10^{-4}

slide from S. Jadach

Bhabha theory uncertainties

- Challenge 1: fermion pair production
 - Technology for $e+e- \rightarrow 4f @ NLO exists$ [Denner, Dittmaier, Roth, Wieders, 2015]
- Challenge 2: hadronic vacuum polarization
 - Factor 2 improvement expected from new data/calculations, but beyond that unclear

[Jegerlehner 2019]

 EW (NLO+) corrections missing in existing tools, but straightforward to implement

Di-photon production

- Experimental challenges:
 - Statistical precision
 - Z-pole: 5×10⁻⁵ for 10 ab⁻¹
 - 250 GeV: 4×10⁻⁴ for 5 ab⁻¹
 - Background from Bhabha (100x larger)

(for 10⁻⁴ precision need 10⁻⁶ suppression, i.e. 10⁻³ per track – doable in central tracking region)

• Acceptance

Normalisation via $e^+e^- \rightarrow \gamma\gamma$ - Acceptance

 In practice, probably advantageous to go forward to something like cos(θ_{min}) = 0.94 (20°)

Higher rate

- \Box May be easier to control $\delta \theta_{min}$ at lower θ_{min} values?
- For $cos(\theta_{min}) = 0.94$, $\delta \theta_{min} = 46 \ \mu rad$ is required

At z_{ref} = 2.25 m, this corresponds to

- Acceptance inner radius: r_{min} = 0.82 m
- Inner acceptance radius to be known to better than δr_{min} = 100 μm, if z_{ref} perfectly known
- $*~z_{ref}$ to better than 300 μm , if $r_{min}\, perfectly\, known$
- All other contributions have to be kept very low
 No holes, no cracks ...

Mogens Dam / NBI Copenhagen

ECFA MiniWorkshop : Luminosity

Di-photon production

- Theory challenges:
 - Photon vacuum polarization only at NNLO (no problem), but there are also (very uncertain) light-by-light contributions

- Large angle requirement (cos $\theta \leq 0.9$) \rightarrow relatively large impact of EW corrections
- Not much MC development

LUMI: Summary / Open Questions

- $ee \rightarrow \gamma \gamma$ promising for absolute calibration
- Bhabha still important for point-to-point calibration (higher statistics)
- No full study for ee→γγ has been done (backgrounds, acceptance, theory uncertainties, ...)
- Need detailed design for LumiCal
- Impact of beamstrahlung? (from simulation? from in-situ lumi spectrum measurement?)
- MC tools need to be upgraded: fermion-pair prod., ...

Wmass – Mass and width of the W boson

Expert team: P. Azzurri, J. Bendavid, M. Beneke, J. de Blas, S. Dittmaier, A. Freitas, A. Irles, A. Meyer, S. Plätzer, M. Schott, R. Ströhmer, G. Wilson

• Gitlab wiki

- Sign up for egroup: ECFA-WHF-FT-WMASS@cern.ch
- Email WG1 PREC conveners: ecfa-whf-wg1-prec-conveners@cern.ch

Slide materials from P. Azzurri

future e+e- mW digest

1. from WW **threshold** cross sections at E_{CM}≃157.5-162.5 GeV →Δm_w=0.3 MeV [10/ab] Syst : Theory calculations / E_{CM} / acceptance / background

2. from decay kinematics mostly at E_{CM}~240 GeV and E_{beam} (LEP2) →Δm_w= 1-0.5 MeV (stat) [2-5/ab] : 2-5 MeV (syst) ? Syst : Theory modeling (NP QCD) / E_{CM} / det calibration /

3. from **lepton decay kinematics** and hadronic decays **without** E_{beam} →Δm_w= 2 MeV (stat) : 2-5 MeV (tot) ? Syst : det calibration / Theory modeling (NP QCD)

The WW threshold lineshape and the W mass

WW threshold : W mass precision requirements

Conditions to achieve $\Delta m_W(syst) < \Delta m_W(stat) = 0.3 \text{ MeV}$ with a single point WW threshold measurement

current theory precision $\Rightarrow \Delta m_W = 3 \text{ MeV}$

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\sigma_B}{\varepsilon} \oplus \Delta\sigma_{TH}\right)$$

Background and Theory

 $\Delta \sigma_{TH} < 1 \text{fb} \quad (\Delta \sigma_{TH} / \sigma_{TH} < 2 \cdot 10^{-4})$ $\Delta \sigma_B / \varepsilon < 1 \text{fb} \quad (\Delta \sigma_B / \sigma_B < 4 \cdot 10^{-3})$

$$\Delta m_W(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta \varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)$$

Acceptance and Luminosity

$$\left(\frac{\Delta\varepsilon}{\varepsilon} \oplus \frac{\Delta L}{L}\right) < 2 \cdot 10^{-4}$$

$$\Delta m_{\scriptscriptstyle W}(E) = \left(\frac{d\sigma}{dm_{\scriptscriptstyle W}}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \leq \frac{1}{2} \Delta E$$

Collision energy

 $\Delta E_b < 0.3 \, MeV \ (\Delta E_b / E_b < 4 \cdot 10^{-6})$

WW threshold : W mass and width

Scans of possible E₁ E₂ data taking energies and luminosity fractions f (at the E₂ point)

Δm_w=0.45 MeV , ΔΓ_w=1 MeV (r=-0.6) Δm_w=0.35 MeV

ECFA meeting - CERN 27 June 2023

WW threshold uncertainties

- Energy calibration:
 - O(10⁻⁶) precision from resonant depolarization at circ. colliders
 - Comparable precision may be achievable from $K_{\rm S}^0 \rightarrow \pi^+\pi^-$ and $\Lambda \rightarrow p\pi^-$ decays [ref]
- Theory challenges:
 - Factorization of WW production and W decay not adequate near threshold
 - For $\Delta m_w \sim 1 \text{ MeV}$ need e+e- $\rightarrow 4f$ at NNLO (!)
 - Alternatively, use EFT framework with NNLO and N3LO building blocks [see arXiv:1906.05379 for more details]
 - More precise treatment of initial-state QED radiation

W mass from decay kinematics

- ► Kinematic reconstruction of *ℓvqq* and *qqqq* final states:
 - ~1 MeV stat. prec. for m_w and Γ_w
 - Beam energy constraint overcomes jet energy scale uncertainty
 - Jet physics and hadronization are still dominant syst. err. (color reconnection for qqqq)
 - Excellent detector efficiency (even for low-E hadrons) can help to control hadron/QCD uncertainties
- Fully leptonic differential observables:
 - Lepton energy spectrum and pseudomass [OPAL, hep-ex/0203026]
 - Higher stat. err. but lower syst. err.

LEP combined results

	Direct Re	construction							
Experiment	$W^+W^- \rightarrow q\overline{q}\ell\nu_\ell$ $m_W[GeV]$	$W^+W^- \rightarrow q\overline{q}q\overline{q}$ $m_W[GeV]$	Combined $m_{\rm W}[{\rm GeV}]$						
	Published								
ALEPH	80.429 ± 0.060	80.475 ± 0.080	80.444 ± 0.051						
DELPHI	80.339 ± 0.075	80.311 ± 0.137	80.336 ± 0.067						
L3	80.212 ± 0.071	80.325 ± 0.080	80.270 ± 0.055						
OPAL	80.449 ± 0.063	80.353 ± 0.083	80.416 ± 0.053						
	LEP co	mbination							
ALEPH	80.429 ± 0.059	80.477 ± 0.082	80.444 ± 0.051						
DELPHI	80.339 ± 0.076	80.310 ± 0.101	80.330 ± 0.064						
L3	80.217 ± 0.071	80.324 ± 0.090	80.254 ± 0.058						
OPAL	80.449 ± 0.062	80.353 ± 0.081	80.415 ± 0.052						

Source	Systematic Uncertainty in MeV						
	on $m_{ m W}$						
	$q\overline{q}\ell\nu_{\ell}$	$q\overline{q}q\overline{q}$	Combined				
ISR/FSR	8	5	7	6			
Hadronisation	13	19	14	40			
Detector effects	10	8	9	23			
LEP energy	9	9	9	5			
Colour reconnection	-	35	8	27			
Bose-Einstein Correlations	_	7	2	3			
Other	3	10	3	12			
Total systematic	21	44	22	55			
Statistical	30	40	25	63			
Statistical in absence of systematics	30	31	22	48			
Total	36	59	34	83			

W mass from lepton Energy and Pseudomass

Endpoints in the lepton (or jet) energy a $E\ell = E_{CM}(1 \pm \beta)$ where β is the W velocity

expected statistical ⊿m_W =4.4 MeV with 2/ab@250 GeV experimental syst from lepton energy calibration

Wmass: Summary / Open Questions

WW threshold scan:

- Study Multi-point (n>3) scans to reduce/cancel syst. err. from acceptance, luminosity, background
- Updated studies with modern generators and methods to evaluate uncertainties
- Higher-order (~NNLO) corrections

W decay kinematics:

- Impact of different CoM energies and syst. err.
- Explore combined analysis of WW, ZZ, Zγ to cancel exp./th. syst. errs
- Modeling of hadronization, color reconnection

Backup

OPAL Summary of Systematics

× 10-4

Quantity	Relative statistical error (×10 ⁻⁴)	Relative Systematic error (×10 ⁻⁴)
Acceptance corrected hadrons	6	7
Acceptance corrected leptons	17	13
Luminosity (theoretical)	0	5.4
Luminosity (experimental)	3	(3.4) -
Photonic correction to $\sigma_{\ell+\ell-}^{\text{pole}}$	0	2

Table 24: This table summarizes the experimental systematic uncertainties on the absolute $L_{\rm RL}$ luminosity measurement for the nine data samples. The lines labeled correlated and uncorrelated refer to errors correlated and uncorrelated among the samples. All errors are in units of 10^{-4} .

Uncertainty	section	93 -2	93 pk	93 + 2	94a	94b	94c	95-2	95	95 +
Radial Metrology uncorrelated	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated		1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.4
Radial Thermal	2.3.2									
uncorrelated		0.06	0.00	0.06	0.09	0.11	0.11	0.25	0.25	0.2
correlated	5.0	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.1
Inner Anchor	4.1.4		0.00	0.07	0.000	0.00				
uncorrelated		0.23	0.23	0.23	0.23	0.23	0.23	0.58	0.58	0.5
Outer Anchor	4.1.4	1.30	1.30	1.39	130	1.30	1.30	1.30	1.39	- 1.4
uncorrelated	9.1.4	0.13	0.13	0.13	0.13	0.13	0.13	0.28	0.28	0.3
correlated		0.31	0.31	0.31	0.31	0.31	0.31	0.30	0.30	0.3
Z Metrology	2.4	0.01	0.51	0.01	0.51	0.01	0.01	0.30	0.30	
uncorrelated	E.C.	0.00	0.00	0.00	0.00	0.00	0.00	0.37	0.37	0.3
correlated		0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.4
Background	8		0.115		0.184	0188		0.44	0148	-
uncorrelated		0.76	0.76	0.76	0.75	0.75	0.75	0.76	0.76	0.7
correlated	100	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.3
Trigger	6						1001.00	10.000	1000	
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.0
Wagon Tagger	6									
uncorrelated	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.0
correlated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Total External $(\Delta \epsilon_{ext})$		1.000	1000			· · · · · · · ·		1.000		
uncorrelated		0.81	0.81	0.81	0.80	0.80	0.81	1.10	1.10	1.1
correlated	-	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.1
Energy	4.3			1.1.2	1222		12.53			1.1
uncorrelated		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.1
correlated	8	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.8
Beam parameters uncorrelated	8	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.5
correlated		0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.5
Radial resolution	8	0.01	0.91	0.07	0.04	0.07	0.01	0.70	0.10	0.1
uncorrelated	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.3
Acollinearity bias	8		0.00						0.00	
uncorrelated	•	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated		0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.3
Azimuthal resolution	8			1.382						1.12
uncorrelated	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated	1.1	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.0
Clustering	8	1.1.1.1	12.5	222		1.500		10.00		- 33
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	- 1.0
$\Delta R - \Delta \Theta$ cut difference	9.3									
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
correlated	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
M.C. statistics	8	0.02	0.07	0.00	0.00	0.10	0.05	0.00	0.04	
uncorrelated		0.29	0.27	0.29	0.33	0.13	0.25	0.36	0.34	0.3
correlated		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.0
Total Simulation (Δt_{sim}) uncorrelated		0.65	0.64	0.65	0.67	0.59	0.63	0.68	0.67	0.0
correlated		2.32	2.32	2.32	2.32	2.32	2.32	2.37	2.37	2.3
	-	2.32	2.52	2.32	2.52	2.52	2.32	2.31	2.31	6.
Grand Total		1.01	1.00		1.01		1.05	1.00		
uncorrelated		1.04	1.03	1.04	1.04	1.00	1.03	1.29	1.28	1.5
correlated		3.17	3.17	3.17	3.17	3.17	3.17	3.21	3.21	3.1

Mogens Dam / NBI Copenhagen

ECFA MiniWorkshop : Luminosity

LumiCal Geometrical Tolerances

Acceptance depends on inner and outer radius of acceptance definition

$$\frac{\Delta A}{A}\approx-\frac{\Delta R_{\rm in}}{1.6\,\mu{\rm m}}\times10^{-4}\qquad {\rm and}\qquad \qquad \frac{\Delta A}{A}\approx+\frac{\Delta R_{\rm out}}{3.8\,\mu{\rm m}}\times10^{-4}$$

\square Aim for construction and metrology precision of 1 μm

Acceptance depends on (half) distance between the two luminometers

LEP (OPAL):

- inner/outer radius
 2.5 μm and 11 μm
- z-position: 123 μm
- achieved lumi prec.:
 3.4 x 10⁻⁴

For FCC-ee:

- factor ~2 improvem. for same precision
- additional factor 4 for precision goal 10⁻⁴

 Situation is somewhat more complicated due to the crossing beam situation
 Now, it is the sum of distances, Z₁ + Z₂, which has to be known to 110 μm

LumiCal CDR Design

- W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps
 Effective Molière radius: ~15 mm
- 25 layers total: 25 X_o
- Cylindrical detector dimensions:

□ Radius: 54 < r < 145 mm

Along outgoing beam line: 1074 < z < 1190 mm</p>

Sensitive region:

□ 55 < r < 115 mm;

- Detectors centered on (and perpendicular to) outgoing beam line
- Angular coverage (>1 Molière radius from edge):
 - Wide acceptance: 62-88 mrad
 Narrow acceptance: 64-86 mrad
 Bhabha cross section @ 91.2 GeV: 14 nb
- Region 115 < r < 145 mm reserved for services:

Red: Mechanical assembly, read-out electronics, cooling, equipment for alignment

Blue: Cabling of signals from front-end electronics to digitizers (behind LumiCals?)

LumiCal effects: Backgrounds

Synchrotron radiation:

Negligible

- Largest effect at √s = 365 GeV, where beam-pipe shielding reduced deposit to O(10 MeV) per LumiCal
- Beamstrahlung background e⁺e⁻ pairs
 - In general, (very) low energy particles effectively focussed by detector magnet
 - GuineaPig simulation with parametrized magnetic field (helix extrapolation)

√s	# e [±] total	# e [±] LumiCal	Energy total	Energy LumiCal	
91.2 GeV	400	0.3	250 GeV	o.o6 GeV	
365 GeV	3100	15	4500 GeV	3.2 GeV	
					_

- ♦ Negligible at low Vs
- Strong energy dependence, at tt energy, starts to become important
- Beam-gas scattering
 - 🗅 Coincidence of off-momentum particles from beam-gas scattering was main background process at LEP 💾
 - 10⁻⁴ level after energy and angular cuts
 - At FCC-ee, ratio between æuminosity and beam current is far higher
 - * Expected to be completely negligible
 - Supported by first study of sample of simulated off-momentum particle

${ m e^+e^-} ightarrow \gamma\gamma$ at $\sqrt{s}=161~{ m GeV}$

Minimum polar angle (°)	$\sigma_{\gamma\gamma}$ (pb)
45	5.3
20	12.7
15	15.5
10	19.5
6	24.6
2	35.7

- Unpolarized Born cross-sections. Typical higher order effects 5 10% increase.
- Note not negligible electroweak box effects near WW threshold. (1.2% at widest angle).
- electron-photon discrimination can be aided by much better azimuthal measurements given the bending of the electrons in the B-field.
 Figure of merit: Bz_{LCAL}. Here ILD has 7.7 Tm. OPAL was 1.04 Tm.

W mass from kinematics with 4P fit (LEP2)

Formula for 2-jets final state from $ee \rightarrow Z\gamma \rightarrow qq\gamma$

 $M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$

E_{CM} is again a main ingredient: sets jet energy scale other main ingredients are the jets (and lepton) **angles** secondary ingredients are the **jet velocities** ($\beta = p/E$)

statistical uncertainties ALEPH LEP2 \rightarrow FCCee extrapolated

Stat uncertainty	∆m _w	ΔΓ _w
e v qq	87 MeV → 0.9 MeV	200 MeV → 2 MeV
μν qq	82 MeV \rightarrow 0.8 MeV	200 MeV \rightarrow 2 MeV
τνqq	121 MeV \rightarrow 1.2 MeV	320 MeV \rightarrow 3.2 MeV
qqqq	70 MeV \rightarrow 0.7 MeV	120 MeV \rightarrow 1.2 MeV
combined	43 MeV \rightarrow 0.4 MeV	90 MeV \rightarrow 0.9 MeV

LEP2 (ALEPH) from ~10k WW @ E_{CM}=183-209 GeV

W mass from the hadronic mass

arXiv:2011.12451

ΔM_W [MeV]	ILC	ILC	ILC	ILC
\sqrt{s} [GeV]	250	350	500	1000
$\mathcal{L} \ [\mathrm{fb}^{-1}]$	500	350	1000	2000
$P(e^{-})$ [%]	80	80	80	80
$P(e^+)$ [%]	30	30	30	30
jet energy scale	3.0	3.0	3.0	3.0
hadronization	1.5	1.5	1.5	1.5
pileup	0.5	0.7	1.0	2.0
total systematics	3.4	3.4	3.5	3.9
statistical	1.5	1.5	1.0	0.5
total	3.7	3.7	3.6	3.9

«.. dominated by the systematic uncertainties from the effective **jet energy scale** which is a challenging demand.. »