Focus topics for the ECFA study on Higgs / Top / EW factories

A. Freitas (U. Pittsburgh)

LUMI – Precision luminosity measurement

Expert team: P. Azzurri, I. Bozovic, M. Dam, A. Freitas, A. Irles, A. Meyer F. Piccinini, W. Płaczek, A. Sailer, M. Skrzypek, G. Wilson

- [Gitlab wiki](https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/LUMI)
- [Sign up](http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=ecfa-whf-ft-lumi) for egroup: ECFA-WHF-FT-LUMI@cern.ch
- Email WG1 PREC conveners: ecfa-whf-wg1-prec-conveners@cern.ch

Slide materials from M. Dam, S. Jadach, G. Wilson

Overview

- ▶ Luminosity calibration important for total cross-section and lineshape measurements (**Z pole**, WW, HZ, ...)
- Absolute calibration, goal $\leq 10^{-4}$
- \blacktriangleright Point-to-point precision, goal $\lt 10^{-5}$
- \triangleright Requirements for Lumi calibration process(es):
	- Large rate / low backgrounds
	- Good control of exp. systematics
	- Reliable, high-precision theory prediction, negligible BSM influence

Exploit well known QED reference processes with no (or weak) dependence on EW parameters

ECFA MiniWorkshop : Luminosity

Small-angle Bhabha scattering

- ▶ Experimental challenges:
	- Metrology (geometrical acceptance)
	- Beam parameters
	- Energy calibration and background from beamstrahlung (for LCs)
- ▶ Theory challenges:
	- Photon vacuum polarization
	- Pair production
	- NLO electroweak corrections

LumiCals @ FCC-ee

Challenge:

- MDI region is very busy, LumiCals pushed far inside main detector volume ٠
- Not much space + increased requirements to precision ٠

LumiCal effects: Focussing of final state particles

 $± 0.0081$

- Small angle final state particles feel focussing effect while traversing through counter-rotating bunch
	- p Effect was present already at LEP but only corrected for in 2019
	- a LEP Bhabha cross sectins were overestimated by about 0.1%
		- Integrated luminosities were underestimated
	- a cross sections were overestimated by about 0.1%
		- * Number of neutrino generations was underestimated by 0.26%

 $N_u = 2.9840 \pm 0.0082$

$$
N_{\nu} = 2.9918
$$

- At FCC-ee, situation more complicated due to finite beam-crossing angle
	- Detailed Guinea-Pig simulation studies
		- ↑ Average angular focussing of 41 urad @ 45.6 GeV and @ 64 mrad
		- * Aceptance effect of the same magnitude as at LEP
			- $.0.19%$
			- . ~20 times luminosity accuracy goal !!
	- p Focussing effect is reflected in also acollinerity angle distribution of Bhabha events
		- * Allows a correction to be done to an estimated 10⁻⁴ accuracy

Bhabha theory uncertainties

- ▶ Mostly QED process -> controlled calculation of h.o. corr.
- ▶ Implementation in MC framework is complex task, but not fundamental obstacle
- ▶ Challenge 1: fermion pair production
- ▶ Challenge 2: hadronic vacuum polarization (non-perturbative, from data or lattice)

- By the time of FCC-ee VP contribution will be merely 0.006% ٠
- QED corrections and Z contrib. come back to front! \bullet

slide from S. Jadach

Bhabha theory uncertainties

- ▶ Challenge 1: fermion pair production
	- Technology for $e+e \rightarrow$ 4f @ NLO exists [Denner, Dittmaier, Roth, Wieders, 2015]
- \triangleright Challenge 2: hadronic vacuum polarization
	- Factor 2 improvement expected from **Example 2019** [Jegerlehner 2019] new data/calculations, but beyond that unclear

▶ EW (NLO+) corrections missing in existing tools, but straightforward to implement

Di-photon production

- ▶ Experimental challenges:
	- Statistical precision
		- Z-pole: 5×10^{-5} for 10 ab⁻¹
		- 250 GeV: 4×10^{-4} for 5 ab⁻¹
	- Background from Bhabha (100x larger)

(for 10^{-4} precision need 10^{-6} suppression, i.e. 10^{-3} per track – doable in central tracking region)

• Acceptance

Normalisation via $e^+e^- \rightarrow \gamma \gamma$ Acceptance \equiv

• In practice, probably advantageous to go forward to something like $cos(\theta_{\text{min}}) = 0.94$ (20°)

D Higher rate

- \Box May be easier to control $\delta\theta_{\text{min}}$ at lower θ_{min} values?
- For $cos(\theta_{\min})$ = 0.94, $\delta\theta_{\min}$ = 46 urad is required

 \Box At z_{ref} = 2.25 m, this corresponds to

- \div Acceptance inner radius: $r_{min} = 0.82$ m
- « Inner acceptance radius to be known to better than δr_{\min} = 100 µm, if z_{ref} perfectly known
- \div z_{ref} to better than 300 µm, if r_{min} perfectly known
- All other contributions have to be kept very low a No holes, no cracks ...

Mogens Dam / NBI Copenhagen

ECFA MiniWorkshop : Luminosity

Di-photon production

- ▶ Theory challenges:
	- Photon vacuum polarization only at NNLO (no problem), but there are also (very uncertain) light-by-light contributions

- Large angle requirement (cos $\theta \leq 0.9$) \rightarrow relatively large impact of EW corrections
- Not much MC development

LUMI: Summary / Open Questions

- \triangleright ee \rightarrow γγ promising for absolute calibration
- ▶ Bhabha still important for point-to-point calibration (higher statistics)
- ▶ No full study for ee→γγ has been done (backgrounds, acceptance, theory uncertainties, ...)
- ▶ Need detailed design for LumiCal
- ▶ Impact of beamstrahlung? (from simulation? from in-situ lumi spectrum measurement?)
- ▶ MC tools need to be upgraded: fermion-pair prod., ...

Wmass – Mass and width of the W boson

Expert team: P. Azzurri, J. Bendavid, M. Beneke, J. de Blas, S. Dittmaier, A. Freitas, A. Irles, A. Meyer, S. Plätzer, M. Schott, R. Ströhmer, G. Wilson

● [Gitlab wiki](https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/Wmass)

- [Sign up](http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=ecfa-whf-ft-wmass) for egroup: ECFA-WHF-FT-WMASS@cern.ch
- Email WG1 PREC conveners: ecfa-whf-wg1-prec-conveners@cern.ch

Slide materials from P. Azzurri

future e+e- mW digest

1. from WW **threshold** cross sections at $E_{CM} \approx 157.5$ -162.5 GeV \rightarrow 4m_w=0.3 MeV [10/ab] Syst : Theory calculations / E_{cm} / acceptance / background

2. from decay **kinematics** mostly at $E_{CM} \approx 240$ GeV and E_{beam} (LEP2) \rightarrow 4m_w = 1-0.5 MeV (stat) [2-5/ab] : 2-5 MeV (syst) ? **Syst: Theory modeling (NP QCD)** $/E_{CM}$ / det calibration /

3. from lepton decay kinematics and hadronic decays without E_{beam} \rightarrow 4m_w= 2 MeV (stat) : 2-5 MeV (tot) ? Syst: det calibration / Theory modeling (NP QCD)

The WW threshold lineshape and the W mass

WW threshold : W mass precision requirements

Conditions to achieve Δm_W (syst) $< \Delta m_W$ (stat) = 0.3 MeV with a single point WW threshold measurement

current theory precision $\Rightarrow \Delta m_W = 3$ MeV

$$
\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta \sigma_B}{\varepsilon} \oplus \Delta \sigma_{TH}\right)
$$

Background and Theory ⁴

$$
\Delta \sigma_{TH} < 1 \text{fb} \quad (\Delta \sigma_{TH} / \sigma_{TH} < 2 \cdot 10^{-4})
$$
\n
$$
\Delta \sigma_B / \varepsilon < 1 \text{fb} \quad (\Delta \sigma_B / \sigma_B < 4 \cdot 10^{-3})
$$

$$
\Delta m_W(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta \varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)
$$

Acceptance and Luminosity

$$
\left(\tfrac{\Delta\varepsilon}{\varepsilon}\oplus\tfrac{\Delta L}{L}\right)<2\cdot 10^{-4}
$$

$$
\Delta m_{\scriptscriptstyle W}(E)\!=\!\left(\frac{d\sigma}{dm_{\scriptscriptstyle W}}\right)^{\!-1}\!\left(\frac{d\sigma}{dE}\right)\!\Delta E\leq \frac{1}{2}\Delta E
$$

Collision energy

 $\Delta E_h < 0.3 \; MeV$ $(\Delta E_h / E_h < 4 \cdot 10^{-6})$

WW threshold: W mass and width

Scans of possible E_1 , E_2 data taking energies and luminosity fractions f (at the E_2 point)

P.Azzurri - W. mass

 $\Delta m_W = 0.35$ MeV

ECFA meeting - CERN 27 June 2023

WW threshold uncertainties

- ▶ Energy calibration:
	- *O*(10⁻⁶) precision from resonant depolarization at circ. colliders
	- Comparable precision may be achievable from $K_{\rm S}^0 \rightarrow \pi^+\pi^-$ and $\Lambda \rightarrow p\pi^-$ decays [[ref\]](https://indico.desy.de/event/33640/contributions/127989/attachments/77657/100606/ECFAHamburg_V3.pdf)
- \triangleright Theory challenges:
	- Factorization of WW production and W decay not adequate near threshold
	- For $\Delta m_w \sim 1$ MeV need e+e- \rightarrow 4f at NNLO (!)
	- Alternatively, use EFT framework with NNLO and N3LO building blocks [see [arXiv:1906.05379](http://arxiv.org/abs/1906.05379) for more details]
	- More precise treatment of initial-state QED radiation

W mass from decay kinematics

- ▶ Kinematic reconstruction of ℓν*qq* and *qqqq* final states:
	- \bullet ~1 MeV stat. prec. for m_w and Γ_w
	- Beam energy constraint overcomes jet energy scale uncertainty
	- Jet physics and hadronization are still dominant syst. err. (color reconnection for *qqqq*)
	- Excellent detector efficiency (even for low-E hadrons) can help to control hadron/QCD uncertainties
- ▶ Fully leptonic differential observables:
	- Lepton energy spectrum and pseudomass [OPAL, [hep-ex/0203026\]](http://arxiv.org/abs/hep-ex/0203026)
	- Higher stat. err. but lower syst. err.

LEP combined results

W mass from lepton Energy and Pseudomass

Endpoints in the lepton (or jet) energy a $E\ell = E_{CM}(1 \pm \beta)$ where β is the W velocity

expected statistical Δm_W =4.4 MeV with $2/ab@250$ GeV experimental syst from lepton energy calibration

Wmass: Summary / Open Questions

WW threshold scan:

- ▶ Study Multi-point (n>3) scans to reduce/cancel syst. err. from acceptance, luminosity, background
- ▶ Updated studies with modern generators and methods to evaluate uncertainties
- ▶ Higher-order (~NNLO) corrections

W decay kinematics:

- ▶ Impact of different CoM energies and syst. err.
- ▶ Explore combined analysis of WW, ZZ, Zγ to cancel exp./th. syst. errs
- ▶ Modeling of hadronization, color reconnection

Backup

OPAL Summary of Systematics

$\times 10^{-4}$

Table 24: This table summarizes the experimental systematic uncertainties on the absolute $L_{\rm RL}$ luminosity measurement for the nine data samples. The lines labeled correlated and uncorrelated refer to errors correlated and uncorrelated among the samples. All errors are in units of 10^{-4} .

ECFA MiniWorkshop : Luminosity

LumiCal Geometrical Tolerances

Acceptance depends on **inner and outer radius** of acceptance definition

$$
\frac{\Delta A}{A} \approx -\frac{\Delta R_{\rm in}}{1.6\,\mu{\rm m}}\times 10^{-4} \hspace{1cm} \text{and} \hspace{1cm} \frac{\Delta A}{A} \approx +\frac{\Delta R_{\rm out}}{3.8\,\mu{\rm m}}\times 10^{-4}
$$

\Box Aim for construction and metrology precision of 1 μ m

Acceptance depends on (half) distance between the two luminometers

LEP (OPAL):

- inner/outer radius 2.5 μm and 11 μm
- z-position: 123 μm
- achieved lumi prec.: 3.4×10^{-4}

For FCC-ee:

- factor \sim 2 improvem. for same precision
- additonal factor 4 for precision goal $10⁻⁴$

a Situation is somewhat more complicated due to the crossing beam situation \Box Now, it is the sum of distances, $Z_1 + Z_2$, Crossing beam lines which has to be known to 110 µm

LumiCal CDR Design

- W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps a Effective Molière radius: ~15 mm
- 25 layers total: 25 X_0
- Cylindrical detector dimensions:

D Radius: $54 < r < 145$ mm

a Along outgoing beam line: 1074 < z < 1190 mm

• Sensitive region:

D 55 < r < 115 mm;

- Detectors centered on (and perpendicular to) outgoing beam line
- Angular coverage (>1 Molière radius from edge):
	- u Wide acceptance: 62-88 mrad D Narrow acceptance: 64-86 mrad p Bhabha cross section @ 91.2 GeV: 14 nb
- + Region 115 < r < 145 mm reserved for services:

a Red: Mechanical assembly, read-out electronics, cooling, equipment for alignment

a Blue: Cabling of signals from front-end electronics to digitizers (behind LumiCals?)

Precision goal: 1 x 10⁻⁴

LumiCal effects: Backgrounds

• Synchrotron radiation:

D Negligible

- \bullet Largest effect at Vs = 365 GeV, where beam-pipe shielding reduced deposit to $O(10 \text{ MeV})$ per LumiCal
- \bullet Beamstrahlung background e+e-pairs
	- a In general, (very) low energy particles effectively focussed by detector magnet
	- a GuineaPig simulation with parametrized magnetic field (helix extrapolation)

- ↑ Negligible at low Vs
- * Strong energy dependence, at tt energy, starts to become important
- Beam-gas scattering
	- a Coincidence of off-momentum particles from beam-gas scattering was main background process at LEP
		- $\div 10^{-4}$ level after energy and angular cuts
	- u At FCC-ee, ratio between æuminosity and beam current is far higher
		- * Expected to be completely negligible
			- . Supported by first study of sample of simulated off-momentum particle

$e^+e^- \rightarrow \gamma\gamma$ at $\sqrt{s} = 161$ GeV

- Unpolarized Born cross-sections. Typical higher order effects $5 10\%$ increase.
- Note not negligible electroweak box effects near WW threshold. $(1.2\%$ at widest angle).
- · electron-photon discrimination can be aided by much better azimuthal measurements given the bending of the electrons in the B-field. Figure of merit: Bz_{LCAL} . Here ILD has 7.7 Tm. OPAL was 1.04 Tm.

W mass from kinematics with 4P fit (LEP2)

Formula for 2-jets final state from ee \rightarrow Z ν \rightarrow qq ν

 $M_{\mathrm{Z}}^{2}=s\frac{\beta_{1}\sin\theta_{1}+\beta_{2}\sin\theta_{2}-\beta_{1}\beta_{2}|\sin(\theta_{1}+\theta_{2})|}{\beta_{1}\sin\theta_{1}+\beta_{2}\sin\theta_{2}+\beta_{1}\beta_{2}|\sin(\theta_{1}+\theta_{2})|}$

E_{CM} is again a main ingredient: sets jet energy scale other main ingredients are the jets (and lepton) angles secondary ingredients are the jet velocities ($\beta = p/E$)

statistical uncertainties ALEPH LEP2 → FCCee extrapolated

LEP2 (ALEPH) from $^{\sim}$ 10k WW @ E_{CM}=183-209 GeV

21

W mass from the hadronic mass

arXiv:2011.12451

«.. dominated by the systematic uncertainties from the effective jet energy scale which is a challenging demand.. »